Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (5): 13-22.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0933
Previous Articles Next Articles
CUI Man1,2(), SHAO Gai-ge3, YANG Nuo-lin2, FAN Qing-hao1, ZHANG Jin-wei1, TIAN Yu2, ZHENG Su-yue2, ZHANG Rui-ying1()
Received:
2023-09-28
Online:
2024-05-26
Published:
2024-03-29
Contact:
ZHANG Rui-ying
E-mail:1628561698@qq.com;zhangruiying@caas.cn
CUI Man, SHAO Gai-ge, YANG Nuo-lin, FAN Qing-hao, ZHANG Jin-wei, TIAN Yu, ZHENG Su-yue, ZHANG Rui-ying. Research Progress in the Effects of Microorganisms on the Growth and Development of Edible Mushrooms[J]. Biotechnology Bulletin, 2024, 40(5): 13-22.
食用菌Edible mushroom | 覆土中的有益微生物Beneficial microbes in casing soil | 参考文献Reference |
---|---|---|
白肉灵芝Ganoderma leucocontextum | 鞘氨醇单胞菌属Sphingomonas、黏液杆菌属Mucilaginibacter、苔藓杆菌属Bryobacter、慢生根瘤菌属Bradyrhizobium | [ |
羊肚菌Morchella spp. | 节杆菌属Arthrobacter、慢生根瘤菌属Bradyhizobium、德沃斯氏菌属Devosia、假节杆菌属Pseudarthrobacter | [ |
暗褐网柄牛肝菌Phlebopus portentosus | 慢生根瘤菌属Bradyrhizobium、Roseiarcus属、Pseudolabrys属 | [ |
大球盖菇Stropharia rugosoannulata | 酸杆菌门Acidobacteria | [ |
Table1 Beneficial microbes in casing soil
食用菌Edible mushroom | 覆土中的有益微生物Beneficial microbes in casing soil | 参考文献Reference |
---|---|---|
白肉灵芝Ganoderma leucocontextum | 鞘氨醇单胞菌属Sphingomonas、黏液杆菌属Mucilaginibacter、苔藓杆菌属Bryobacter、慢生根瘤菌属Bradyrhizobium | [ |
羊肚菌Morchella spp. | 节杆菌属Arthrobacter、慢生根瘤菌属Bradyhizobium、德沃斯氏菌属Devosia、假节杆菌属Pseudarthrobacter | [ |
暗褐网柄牛肝菌Phlebopus portentosus | 慢生根瘤菌属Bradyrhizobium、Roseiarcus属、Pseudolabrys属 | [ |
大球盖菇Stropharia rugosoannulata | 酸杆菌门Acidobacteria | [ |
[1] |
张金霞, 陈强, 黄晨阳, 等. 食用菌产业发展历史、现状与趋势[J]. 菌物学报, 2015, 34(4): 524-540.
doi: 10.13346/j.mycosystema.150076 |
Zhang JX, Chen Q, Huang CY, et al. History, current situation and trend of edible mushroom industry development[J]. Mycosystema, 2015, 34(4): 524-540. | |
[2] | 黄年来. 银耳菌种生产的原理和方法[J]. 食用菌, 2007, 29(1): 25-27. |
Huang NL. Principle and method of tremella production[J]. Edible Fungi, 2007, 29(1): 25-27. | |
[3] | 田云霞, 童江云, 汪威, 等. 银耳属伴生现象研究进展[J]. 食用菌, 2019, 41(4): 1-3. |
Tian YX, Tong JY, Wang W, et al. Research progress on commensalism of Tremella[J]. Edible Fungi, 2019, 41(4): 1-3. | |
[4] | 奚莉萍, 胡晨梦卉, 李彩红, 等. 覆土细菌在食用菌栽培中的作用[J]. 生物学杂志, 2023, 40(3): 101-106. |
Xi LP, Hu CMH, Li CH, et al. The roles of bacteria in casing soil during the cultivation of edible fungi[J]. J Biol, 2023, 40(3): 101-106. | |
[5] |
Orlofsky E, Zabari L, Bonito G, et al. Changes in soil bacteria functional ecology associated with Morchella rufobrunnea fruiting in a natural habitat[J]. Environ Microbiol, 2021, 23(11): 6651-6662.
doi: 10.1111/1462-2920.15692 pmid: 34327796 |
[6] | 王贺祥, 刘庆洪. 食用菌栽培学[M]. 2版. 北京: 中国农业大学出版社, 2014: 201-225. |
Wang HX, Liu QH. Mushroom cultivation[M]. 2nd ed. Beijing: China Agricultural University Press, 2014: 201-225. | |
[7] | 陈俏彪, 王东明, 毛可红. 食用菌培养料细菌性污染的细菌种群特征[J]. 江苏农业科学, 2011, 39(6): 417-418. |
Chen QB, Wang DM, Mao KH. Bacterial population characteristics of bacterial contamination in edible fungi culture materials[J]. Jiangsu Agric Sci, 2011, 39(6): 417-418. | |
[8] |
朱兆香, 庄文颖. 木霉属研究概况[J]. 菌物学报, 2014, 33(6): 1136-1153.
doi: 10.13346/j.mycosystema.140158 |
Zhu ZX, Zhuang WY. Current understanding of the genus Trichoderma(Hypocreales, Ascomycota)[J]. Mycosystema, 2014, 33(6): 1136-1153. | |
[9] | An XY, Cheng GH, Gao HX, et al. Phylogenetic analysis of Trichoderma species associated with green mold disease on mushrooms and two new pathogens on Ganoderma sichuanense[J]. J Fungi, 2022, 8(7): 704. |
[10] | 边银丙. 食用菌菌丝体侵染性病害与竞争性病害研究进展[J]. 食用菌学报, 2013, 20(2): 1-7. |
Bian YB. Research progresson infectious and competitive mycelial diseases of edible mushrooms[J]. Acta Edulis Fungi, 2013, 20(2): 1-7. | |
[11] | 马晓龙, 王刚正, 樊晓琳, 等. 食用菌与木霉菌互作机制研究进展[J]. 微生物学通报, 2019, 46(1): 184-191. |
Ma XL, Wang GZ, Fan XL, et al. Interaction between edible fungi and Trichoderma spp.: a review[J]. Microbiol China, 2019, 46(1): 184-191. | |
[12] | Savoie JM, Mata G. Trichoderma harzianum metabolites pre-adapt mushrooms to Trichoderma aggressivum antagonism[J]. Mycologia, 2003, 95(2): 191-199. |
[13] | 秦文韬, 王守现, 荣成博, 等. 我国食用菌病害发生与防控概况[J]. 中国食用菌, 2020, 39(12): 1-7. |
Qin WT, Wang SX, Rong CB, et al. Occurrence and management of edible fungus diseases in China[J]. Edible Fungi China, 2020, 39(12): 1-7. | |
[14] | 李宝聚, 阚琳娜, 徐凯, 等. 食用菌生产中主要竞争性病害的种类及其防控技术[J]. 中国蔬菜, 2005(12): 61-62. |
Li BJ, Kan LN, Xu K, et al. Main competitive diseases in edible fungi production and their prevention and control techniques[J]. China Veg, 2005(12): 61-62. | |
[15] | 沈新磊, 姚勇. 鸡腿菇总状炭角菌的发生规律及绿色防控技术[J]. 食用菌, 2016, 38(6): 55-56. |
Shen XL, Yao Y. Occurrence regularity and green prevention and control technology of Coprinus comatus[J]. Edible Fungi, 2016, 38(6): 55-56. | |
[16] |
朱力扬, 黄梅, 图力古尔. 中国鬼伞类真菌的分类[J]. 菌物学报, 2022, 41(6): 878-898.
doi: 10.13346/j.mycosystema.210398 |
Zhu LY, Huang M, Tu LGE. Taxonomy of coprinoid fungi in China[J]. Mycosystema, 2022, 41(6): 878-898.
doi: 10.13346/j.mycosystema.210398 |
|
[17] | 朱富春. 食用菌两种真菌病害的发生规律与综合防治[J]. 食用菌, 2018, 40(4): 59-60. |
Zhu FC. Occurrence regularity and comprehensive control of two fungal diseases of edible fungi[J]. Edible Fungi, 2018, 40(4): 59-60. | |
[18] | 白新俊. 草菇栽培要防鬼伞发生[J]. 农村新技术, 2019(7): 18-19. |
Bai XJ. Prevention of ghost umbrella in straw mushroom cultivation[J]. Nongcun Xinjishu, 2019(7): 18-19. | |
[19] | 隋昆澎, 田龙, 宋冰, 等. 食用菌细菌性病害研究进展[J]. 食用菌学报, 2020, 27(1): 97-104. |
Sui KP, Tian L, Song B, et al. Advances in bacterial diseases of edible fungi[J]. Acta Edulis Fungi, 2020, 27(1): 97-104. | |
[20] | 刘晨光, 王青, 边银丙, 等. 主栽食用菌的细菌性病害研究进展[J]. 食药用菌, 2022, 30(1): 36-42. |
Liu CG, Wang Q, Bian YB, et al. Research progress on bacterial diseases of major edible mushrooms[J]. Edible and Medicinal Mushrooms, 2022, 30(1): 36-42. | |
[21] | Zhang RY, Hu DD, Gu JG, et al. Evaluation of oyster mushroom strains for resistance to Pseudomonas tolaasii by inoculation in spawned substrates[J]. Eur J Plant Pathol, 2013, 137(1): 119-126. |
[22] | 张瑞颖, 左雪梅, 姜瑞波. 平菇褐斑病病原菌的分离与鉴定[J]. 中国食用菌, 2007, 26(5): 58-60. |
Zhang RY, Zuo XM, Jiang RB. Isolation and identification of the pathogenic bacteria causing brown blotch disease of Pleurotus ostreatus[J]. Edible Fungi China, 2007, 26(5): 58-60. | |
[23] | 黄在兴, 刘斌. 食用菌托拉氏假单胞菌相关病害研究进展[J]. 中国植保导刊, 2021, 41(11): 15-23. |
Huang ZX, Liu B. Advances in edible mushrooms diseases caused by Pseudomonas tolaasii[J]. China Plant Prot, 2021, 41(11): 15-23. | |
[24] | Yun YB, Cho KH, Kim YK. Inhibition of tolaasin cytotoxicity causing brown blotch disease in cultivated mushrooms using tolaasin inhibitory factors[J]. Toxins, 2023, 15(1): 66. |
[25] | 张瑞颖, 胡丹丹, 顾金刚, 等. 刺芹侧耳细菌性软腐病病原菌分离鉴定[J]. 食用菌学报, 2013, 20(3): 43-49. |
Zhang RY, Hu DD, Gu JG, et al. Identification and characterization of an Erwinia sp. causing bacterial soft-rot disease on Pleurotus eryngii cultivated in China[J]. Acta Edulis Fungi, 2013, 20(3): 43-49. | |
[26] | Xu F, Yan H, Liu Y, et al. A re-evaluation of the taxonomy and classification of the type III secretion system in a pathogenic bacterium causing soft rot disease of Pleurotus eryngii[J]. Curr Microbiol, 2021, 78(1): 179-189. |
[27] | Allaga H, Zhumakayev A, Büchner R, et al. Members of the Trichoderma harzianum species complex with mushroom pathogenic potential[J]. Agronomy, 2021, 11(12): 2434. |
[28] |
Samuels GJ, Dodd SL, Gams W, et al. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus[J]. Mycologia, 2002, 94(1): 146-170.
pmid: 21156486 |
[29] |
de la Fuente ME, Beyer DM, Rinker DL. First report of Trichoderma harzianum biotype Th4, on commercial button mushrooms in California[J]. Plant Dis, 1998, 82(12): 1404.
doi: 10.1094/PDIS.1998.82.12.1404B pmid: 30845489 |
[30] | Lu BH, Zuo B, Liu XL, et al. Trichoderma harzianum causing green mold disease on cultivated Ganoderma lucidum in Jilin Province, China[J]. Plant Dis, 2016, 100(12): 2524. |
[31] |
Błaszczyk L, Siwulski M, Sobieralski K, et al. Diversity of Trichoderma spp. causing Pleurotus green mould diseases in Central Europe[J]. Folia Microbiol, 2013, 58(4): 325-333.
doi: 10.1007/s12223-012-0214-6 pmid: 23192526 |
[32] | 刘正慧, 李丹, SOSSAH Frederick Leo, 等. 食用菌主要病原真菌和细菌[J]. 菌物研究, 2018, 16(3): 158-163. |
Liu ZH, Li D, Sossah F, et al. Major pathogenic fungi and bacteria in edible fungi[J]. J Fungal Res, 2018, 16(3): 158-163. | |
[33] |
Chakwiya A, Van der Linde EJ, Chidamba L, et al. Diversity of Cladobotryum mycophilum isolates associated with cobweb disease of Agaricus bisporus in the South African mushroom industry[J]. Eur J Plant Pathol, 2019, 154(3): 767-776.
doi: 10.1007/s10658-019-01700-7 |
[34] | Tian FH, Li CT, Li Y. First report of Cladobotryum varium causing cobweb disease of Pleurotus eryngii var. tuoliensis in China[J]. Plant Dis, 2018, 102(4): 826. |
[35] | Carrasco J, Navarro MJ, Gea FJ. Cobweb, a serious pathology in mushroom crops: a review[J]. Span J Agric Res, 2017, 15(2): e10R01. |
[36] | Qin WT, Li J, Zeng ZQ, et al. First report of cobweb disease in Oudemansiella raphanipes caused by Cladobotryum varium in Beijing, China[J]. Plant Dis, 2021: 105(12): 4171. |
[37] | Lan YF, Cong QQ, Wang QW, et al. First report of Cladobotryum protrusum causing cobweb disease on cultivated Morchella importuna[J]. Plant Dis, 2020, 104(3): 977. |
[38] | 黄清铧, 王庆福, 刘新锐, 等. 双孢蘑菇疣孢霉病研究进展[J]. 食用菌学报, 2013, 20(2): 69-74. |
Huang QH, Wang QF, Liu XR, et al. Research progress on the mushroom pathogen Mycogone perniciosa[J]. Acta Edulis Fungi, 2013, 20(2): 69-74. | |
[39] | Du YX, Shi NN, Ruan HC, et al. Three Mycogone species, including a new species, cause wet bubble disease of Agaricus bisporus in China[J]. Plant Dis, 2021, 105(12): 3967-3977. |
[40] | Li D, Sossah FL, Yang Y, et al. Genetic and pathogenic variability of Mycogone perniciosa isolates causing wet bubble disease on Agaricus bisporus in China[J]. Pathogens, 2019, 8(4): 179. |
[41] | 张春兰, 徐济责, 柿岛真, 等. 双孢蘑菇疣孢霉病的发病过程及病原菌的核相研究[J]. 微生物学报, 2017, 57(3): 422-433. |
Zhang CL, Xu JZ, Shi DZ, et al. The development of Agaricus bisporus wet bubble disease and the nuclear phase of pathogen[J]. Acta Microbiol Sin, 2017, 57(3): 422-433. | |
[42] |
黄清铧, 王松, 张扬, 等. 有害疣孢霉菌与双孢蘑菇的互作关系[J]. 菌物学报, 2014, 33(2): 440-448.
doi: 10.13346/j.mycosystema.130212 |
Huang QH, Wang S, Zhang Y, et al. The interactions between Mycogone perniciosa and Agaricus bisporus[J]. Mycosystema, 2014, 33(2): 440-448. | |
[43] |
Largeteau ML, Savoie JM. Effect of the fungal pathogen Verticillium fungicola on fruiting initiation of its host, Agaricus bisporus[J]. Mycol Res, 2008, 112(Pt 7): 825-828.
doi: 10.1016/j.mycres.2008.01.018 pmid: 18501577 |
[44] | 黄春燕, 万鲁长, 张柏松, 等. 菌生轮枝霉对鸡腿蘑侵染的研究初报[J]. 山东农业科学, 2009, 41(2): 81-83. |
Huang CY, Wan LC, Zhang BS, et al. Preliminary study on infection of Verticillium fungicola var. aleophilum on Coprinus comatus[J]. Shandong Agric Sci, 2009, 41(2): 81-83. | |
[45] | Wong WC, Preece TF. Sources of Verticillium fungicola on a commercial mushroom farm in England[J]. Plant Pathol, 1987, 36(4): 577-582. |
[46] | He XL, Peng WH, Miao RY, et al. White mold on cultivated morels caused by Paecilomyces penicillatus[J]. FEMS Microbiol Lett, 2017, 364(5). DOI: 10.1093/femsle/fnx037. |
[47] | Guo MP, Chen K, Wang GZ, et al. First report of stipe rot disease on Morchella importuna caused by Fusarium incarnatum-F. equiseti species complex in China[J]. Plant Dis, 2016, 100(12): 2530. |
[48] | He PX, Li CC, Cai YL, et al. First report of pileus rot disease on cultivated Morchella importuna caused by Diploöspora longispora in China[J]. J Gen Plant Pathol, 2018, 84(1): 65-69. |
[49] | 黄慧, 张晓勇, 郑欢, 等. 羊肚菌菌盖干腐病病原菌鉴定及培养特性研究[J]. 植物保护, 2022, 48(1): 66-72. |
Huang H, Zhang XY, Zheng H, et al. Identification and cultural characterization of Diploöspora longispora associated with pileus rot disease on cultivated morel[J]. Plant Prot, 2022, 48(1): 66-72. | |
[50] | 何林蔓, 柳宜池, 陈莎, 等. 血耳伴生菌胞外多糖的抗氧化活性及吸湿、保湿性能[J]. 食品研究与开发, 2023, 44(17): 30-36. |
He LM, Liu YC, Chen S, et al. Antioxidant activity, moisture-absorption and moisture-retention properties of exopolysaccharides from the associated fungus of Tremella sanquinea[J]. Food Research and Development, 2023, 44(17): 30-36. | |
[51] | 韦中强, 肖波, 李娜, 等. 猪苓菌核共生营养优势蜜环菌初步筛选[J]. 南方农业, 2021, 15(20): 1-3. |
Wei ZQ, Xiao B, Li N, et al. Preliminary screening of Armillaria mellea with symbiotic nutritional advantages of Polyporus umbellatus sclerotium[J]. South China Agric, 2021, 15(20): 1-3. | |
[52] | 林辉, 赖淑芳, 郑珠霜, 等. 香灰菌与银耳混合培养过程中酶系的相互作用[J]. 中国食用菌, 2015, 34(4): 57-61. |
Lin H, Lai SF, Zheng ZS, et al. Interaction rules of enzyme system between Hypoxylon sp. and Tremella fuciformis[J]. Edible Fungi China, 2015, 34(4): 57-61. | |
[53] | 王庆福. 银耳与香灰菌CAZymes差异性研究[D]. 福州: 福建农林大学, 2016. |
Wang QF. The difference of CAZymes between Tremella fuciformis and Hypoxylon sp[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. | |
[54] |
Millanes AM, Diederich P, Ekman S, et al. Phylogeny and character evolution in the jelly fungi(Tremellomycetes, Basidiomycota, Fungi)[J]. Mol Phylogenet Evol, 2011, 61(1): 12-28.
doi: 10.1016/j.ympev.2011.05.014 pmid: 21664282 |
[55] | 曹瑶, 杨林雷, 李荣春, 等. 金耳培养物的物种组成及营养运输关系[J]. 食用菌学报, 2022, 29(2): 48-53. |
Cao Y, Yang LL, Li RC, et al. A preliminary study on composition of fungal species and nutrient transportation in Naematelia aurantialba culture[J]. Acta Edulis Fungi, 2022, 29(2): 48-53. | |
[56] | 田果廷, 赵丹丹, 赵永昌. 金耳有效菌种的制备技术研究[J]. 西南农业学报, 2010, 23(5): 1620-1624. |
Tian GT, Zhao DD, Zhao YC. Study on technology for spawn preparation for Tremella aurantialba[J]. Southwest China J Agric Sci, 2010, 23(5): 1620-1624. | |
[57] |
张朝辉, 闫鹏, 张广, 等. 双孢蘑菇覆土出菇机理研究进展[J]. 园艺学报, 2023, 50(9): 2048-2058.
doi: 10.16420/j.issn.0513-353x.2022-0460 |
Zhang CH, Yan P, Zhang G, et al. Research progress on the mechanism of the mushroom formation in the button mushroom(Agaricus bisporus)induced by casing soils[J]. Acta Horticulturae Sinica, 2023, 50(9): 2048-2058. | |
[58] |
曹旸, 纪光燕, 罗顺珍, 等. 暗褐网柄牛肝菌人工驯化研究的回顾与前瞻[J]. 菌物学报, 2021, 40(12): 3064-3080.
doi: 10.13346/j.mycosystema.210348 |
Cao Y, Ji GY, Luo SZ, et al. Domestication and artificially cultivation of Phlebopus portentosus: retrospect and prospect[J]. Mycosystema, 2021, 40(12): 3064-3080. | |
[59] | 李正鹏, 李玉, 周峰, 等. 大球盖菇工厂化栽培技术[J]. 食用菌, 2018, 40(5): 49-50. |
Li ZP, Li Y, Zhou F, et al. Industrial cultivation techniques of Pleurotus ostreatus[J]. Edible Fungi, 2018, 40(5): 49-50. | |
[60] | 纪大千, 宋美金, 李代芳. 红托竹荪的人工栽培[J]. 食用菌, 1983,(1): 6-7. |
Ji DQ, Song MJ, Li DF. Artificial cultivation of Dictyophora rubrovolvata[J]. Edible Fungi, 1983,(1): 6-7. | |
[61] | Yao CX, Tao N, Liu JX, et al. Differences in soil microbiota of continuous cultivation of Ganoderma leucocontextum[J]. Agronomy, 2023, 13(3): 888. |
[62] | Yu FM, Jayawardena RS, Thongklang N, et al. Morel production associated with soil nitrogen-fixing and nitrifying microorganisms[J]. J Fungi, 2022, 8(3): 299. |
[63] | Yang RH, Bao DP, Guo T, et al. Bacterial profiling and dynamic succession analysis of Phlebopus portentosus casing soil using MiSeq sequencing[J]. Front Microbiol, 2019, 10: 1927. |
[64] | Gong S, Chen C, Zhu JX, et al. Effects of wine-cap Stropharia cultivation on soil nutrients and bacterial communities in forestlands of Northern China[J]. PeerJ, 2018, 6: e5741. |
[65] | Hayes WA, Randle PE, Last FT. The nature of the microbial stimulus affecting sporophore formation in Agaricus bisporus(Lange)Sing[J]. Ann Appl Biol, 1969, 64(1): 177-187. |
[66] |
Colauto NB, Fermor TR, Eira AF, et al. Pseudomonas putida stimulates primordia on Agaricus bitorquis[J]. Curr Microbiol, 2016, 72(4): 482-488.
doi: 10.1007/s00284-015-0982-8 pmid: 26742772 |
[67] | Rainey PB. Effect of Pseudomonas putida on hyphal growth of Agaricus bisporus[J]. Mycol Res, 1991, 95(6): 699-704. |
[68] | 王琳, 魏启舜, 周影, 等. 覆土层益生菌恶臭假单胞菌TK3对双孢蘑菇的促生作用[J]. 食用菌学报, 2018, 25(3): 23-29, 封2. |
Wang L, Wei QS, Zhou Y, et al. Addition of Pseudomonas putida TK3 into the casing soil to promote growth of Agaricus bisporus[J]. Acta Edulis Fungi, 2018, 25(3): 23-29, 封2. | |
[69] | 张君, 齐曼, 郭家稳, 等. 双孢蘑菇出菇的气体自抑物质研究进展[J]. 食药用菌, 2022, 30(4): 248-260. |
Zhang J, Qi M, Guo JW, et al. Recent advances in the volatile self-inhibitor for mushroom formation of the button mushroom, Agaricus bisporus[J]. Edible and Medicinal Mushrooms, 2022, 30(4): 248-260. | |
[70] | 张大飞, 戚元成, 高玉千, 等. 双孢蘑菇覆土出菇机理初步探讨[J]. 食用菌, 2010, 32(1): 9-11, 16. |
Zhang DF, Qi YC, Gao YQ, et al. A primary analysis on the mechanism of casing soil triggering the sporophore formation of Agaricus bisporus[J]. Edible Fungi, 2010, 32(1): 9-11, 16. | |
[71] | Pion M, Spangenberg JE, Simon A, et al. Bacterial farming by the fungus Morchella crassipes[J]. Proc Biol Sci, 2013, 280(1773): 20132242. |
[72] |
Lohberger A, Spangenberg JE, Ventura Y, et al. Effect of organic carbon and nitrogen on the interactions of Morchella spp. and bacteria dispersing on their Mycelium[J]. Front Microbiol, 2019, 10: 124.
doi: 10.3389/fmicb.2019.00124 pmid: 30881350 |
[73] | Longley R, Benucci GMN, Mills G, et al. Fungal and bacterial community dynamics in substrates during the cultivation of morels(Morchella rufobrunnea)indoors[J]. FEMS Microbiol Lett, 2019, 366(17): fnz215. |
[74] | 张月珠, 蒋文静, 常颖萃, 等. 竹荪连作土壤拮抗细菌的分离鉴定及抑菌活性[J]. 热带农业科学, 2018, 38(1): 90-94. |
Zhang YZ, Jiang WJ, Chang YC, et al. Isolation, identification and anti-microbial activity of antagonistic bacteria in continuous cropping soil of Dictyophora[J]. Chin J Trop Agric, 2018, 38(1): 90-94. | |
[75] | Liu WY, Guo HB, Ke-Xin B, et al. Determining why continuous cropping reduces the production of the morel Morchella sextelata[J]. Front Microbiol, 2022, 13: 903983. |
[76] | Pandin C, Le Coq D, Deschamps J, et al. Complete genome sequence of Bacillus velezensis QST713: a biocontrol agent that protects Agaricus bisporus crops against the green mould disease[J]. J Biotechnol, 2018, 278: 10-19. |
[77] | Milijašević-Marčić S, Stepanović M, Todorović B, et al. Biological control of green mould on Agaricus bisporus by a native Bacillus subtilis strain from mushroom compost[J]. Eur J Plant Pathol, 2017, 148(3): 509-519. |
[78] | Mwangi RW, Kariuki S, Wagara I. Biocontrol of green mould disease of oyster mushroom(Pleurotus ostreatus)using Bacillus amyloliquefaciens[J]. J Biol Agric Healthc, 2017, 7: 25-30. |
[79] | 吴洪福, 郭淑元, 李海涛, 等. 苏云金芽孢杆菌杀虫晶体蛋白结构和功能研究进展[J]. 东北农业大学学报, 2009, 40(2): 118-122. |
Wu HF, Guo SY, Li HT, et al. Progress on structure and function of insecticidal crystal proteins from Bacillus thuringiensis[J]. J Northeast Agric Univ, 2009, 40(2): 118-122. | |
[80] | 王帆帆, 曲绍轩, 林金盛, 等. 食用菌异迟眼蕈蚊苏云金芽孢杆菌筛选及杀虫蛋白基因鉴定[J]. 浙江大学学报: 农业与生命科学版, 2019, 45(2): 189-195. |
Wang FF, Qu SX, Lin JS, et al. Screening of Bacillus thuringiensis and identification of insecticidal crystal protein gene against Bradysia difformis in mushroom cultivation[J]. J Zhejiang Univ Agric Life Sci, 2019, 45(2): 189-195. | |
[81] | 师迎春, 杨秀芬, 张涛, 等. 苏云金芽孢杆菌制剂对双孢蘑菇栽培房眼蕈蚊的控制作用[J]. 食用菌学报, 2014, 21(4): 76-80. |
Shi YC, Yang XF, Zhang T, et al. Effectiveness of Bacillus thuringiensis microbial agents in controlling sciarid fly infestation in Agaricus bisporus cultivation rooms[J]. Acta Edulis Fungi, 2014, 21(4): 76-80. | |
[82] | Serna-Chavez HM, Fierer N, Global drivers and patterns of microbial abundance in soil[J]. Glob Ecol Biogeogr, 2013, 22(10): 1162-1172. |
[83] | 马学兰, 周连玉, 巨家升. 微生物菌剂在粮食作物生产中的应用研究进展[J]. 山西农业科学, 2023, 51(4): 456-461. |
Ma XL, Zhou LY, Ju JS. Research progress on application of microbial agents in production of grain crops[J]. J Shanxi Agric Sci, 2023, 51(4): 456-461. | |
[84] | 刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展[J]. 微生物学报, 2021, 61(2): 231-248. |
Liu JW, Li XZ, Yao MJ. Research progress on assembly of plant rhizosphere microbial community[J]. Acta Microbiol Sin, 2021, 61(2): 231-248. | |
[85] | Zhang L, Zhou JC, George TS, et al. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra[J]. Trends Plant Sci, 2022, 27(4): 402-411. |
[86] | Rudnick MB, van Veen JA, de Boer W. Oxalic acid: a signal molecule for fungus-feeding bacteria of the genus Collimonas?[J]. Environ Microbiol Rep, 2015, 7(5): 709-714. |
[87] | Syed S, Buddolla V, Lian B. Oxalate carbonate pathway-conversion and fixation of soil carbon-a potential scenario for sustainability[J]. Front Plant Sci, 2020, 11: 591297. |
[88] | Li JT, Duan YC, Hu ZY, et al. Physiological mechanisms by which gypsum increases the growth and yield of Lentinula edodes[J]. Appl Microbiol Biotechnol, 2022, 106(7): 2677-2688. |
[89] | Shu LL, Wang MY, Wang S, et al. Excessive oxalic acid secreted by Sparassis latifolia inhibits the growth of mycelia during its saprophytic process[J]. Cells, 2022, 11(15): 2423. |
[1] | YU Li-jun, WANG Qiao-mei, PENG Wen-shu, YAN Liang, YANG Rui-juan. Study on the Microbial Community of Rhizosphere Soil in Ancient Tea Garden and Modern Organic Tea Garden in Jingmai Mountain [J]. Biotechnology Bulletin, 2024, 40(5): 237-247. |
[2] | WANG Hao-jie, CHANG Dong, LI Jun-ying, MENG Hao-guang, JIANG Shi-jun, ZHOU Shuo-ye, CUI Jiang-kuan. Analysis of Microbial Community Changes and Stress-resistant Enzyme Activities of Flue-cured Tobacco Three-stage Seedling Raising in Different Habitats [J]. Biotechnology Bulletin, 2024, 40(4): 242-254. |
[3] | LIU Jia-ning, LI Meng, YANG Xin-sen, WU Wei, PEI Xin-wu, YUAN Qian-hua. Impact of Different Water Management Cultivation Methods on the Rhizosphere Bacteria Community of Shanlan Upland Rice [J]. Biotechnology Bulletin, 2024, 40(3): 242-250. |
[4] | WANG Yu-qing, MA Zi-qi, HOU Jia-xin, ZONG Yu-qi, HAO Han-rui, LIU Guo-yuan, WEI Hui, LIAN Bo-lin, CHEN Yan-hong, ZHANG Jian. Research Progress in the Composition Analysis and Ecological Function of Plant Root Exudates Under Salt Stress [J]. Biotechnology Bulletin, 2024, 40(1): 12-23. |
[5] | FENG Lu-yao, ZHAO Jiang-yuan, SHI Zhu-feng, MO Yan-fang, YANG Tong-yu, SHEN Yun-xin, HE Fei-fei, LI Ming-gang, YANG Pei-wen. Isolation and Identification of Bacteria in Forest Rhizosphere Soil and Their Biological Activity Screening [J]. Biotechnology Bulletin, 2024, 40(1): 294-307. |
[6] | ZHANG Kun, YAN Chang, TIAN Xin-peng. Research Progress in Microbial Single Cell Separation Methods [J]. Biotechnology Bulletin, 2023, 39(9): 1-11. |
[7] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[8] | ZHAO Lin-yan, XU Wu-mei, WANG Hao-ji, WANG Kun-yan, WEI Fu-gang, YANG Shao-zhou, GUAN Hui-lin. Effects of Applying Biochar on the Rhizosphere Fungal Community and Survival Rate of Panax notoginseng Under Continuous Cropping [J]. Biotechnology Bulletin, 2023, 39(7): 219-227. |
[9] | ZHANG Jing, ZHANG Hao-rui, CAO Yun, HUANG Hong-ying, QU Ping, ZHANG Zhi-ping. Research Progress in Thermophilic Microorganisms for Cellulose Degradation [J]. Biotechnology Bulletin, 2023, 39(6): 73-87. |
[10] | YU Yang, LIU Tian-hai, LIU Li-xu, TANG Jie, PENG Wei-hong, CHEN Yang, TAN Hao. Study on Aerosol Microbial Community in the Production Workshop of Morel Spawn [J]. Biotechnology Bulletin, 2023, 39(5): 267-275. |
[11] | ZHANG Hua-xiang, XU Xiao-ting, ZHENG Yun-ting, XIAO Chun-qiao. Roles of Phosphate-solubilizing Microorganisms in the Passivation and Phytoremediation of Heavy Metal Contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(3): 52-58. |
[12] | LI Xin-yue, ZHOU Ming-hai, FAN Ya-chao, LIAO Sha, ZHANG Feng-li, LIU Chen-guang, SUN Yue, ZHANG Lin, ZHAO Xin-qing. Research Progress in the Improvement of Microbial Strain Tolerance and Efficiency of Biological Manufacturing Based on Transporter Engineering [J]. Biotechnology Bulletin, 2023, 39(11): 123-136. |
[13] | HU Jin-chao, SHEN Wen-qi, XU Chao-ye, FAN Ya-qi, LU Hao-yu, JIANG Wen-jie, LI Shi-long, JIN Hong-chen, LUO Jian-mei, WANG Min. Research Advances in the Enhancement of Microbial Tolerance to Acid Stress [J]. Biotechnology Bulletin, 2023, 39(11): 137-149. |
[14] | WANG Chen-yu, ZHOU Chu-yuan, HE Di, FAN Zi-hao, WANG Meng-meng, YANG Liu-yan. Role and Mechanism of Polyphosphate in the Microbial Response to Environmental Stresses [J]. Biotechnology Bulletin, 2023, 39(11): 168-181. |
[15] | WAN Qi-wu, BAO Xu-dong, DING Ke, MOU Hua-ming, LUO Yang. Research Progress in Microfluidic Technology in the Detection of Pathogenic Microorganisms [J]. Biotechnology Bulletin, 2023, 39(10): 107-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||