Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (1): 294-307.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0586
Previous Articles Next Articles
FENG Lu-yao1,2(), ZHAO Jiang-yuan3, SHI Zhu-feng2, MO Yan-fang2,4, YANG Tong-yu2,4, SHEN Yun-xin2,4, HE Fei-fei1, LI Ming-gang3, YANG Pei-wen2()
Received:
2023-06-20
Online:
2024-01-26
Published:
2024-02-06
Contact:
YANG Pei-wen
E-mail:huan2004212@163.com;peiwenyang@yaas.org.cn
FENG Lu-yao, ZHAO Jiang-yuan, SHI Zhu-feng, MO Yan-fang, YANG Tong-yu, SHEN Yun-xin, HE Fei-fei, LI Ming-gang, YANG Pei-wen. Isolation and Identification of Bacteria in Forest Rhizosphere Soil and Their Biological Activity Screening[J]. Biotechnology Bulletin, 2024, 40(1): 294-307.
Fig. 2 Phylogenetic tree of 32 genera representative strains in the Wuliangshan rhizosphere soil, constructed by neighbor-joining tree based on 16S rDNA gene
菌株 Strain | 种属名 Top-hit taxon | 溶磷 Phosphorus solution | 固氮 Nitrogen fixation | 解钾 Potassium solution | 拮抗镰刀菌 Antagonistic fusarium |
---|---|---|---|---|---|
YIM B08401 | B. alba | + | + | - | + |
YIM B08402 | P. qingdaonensis | + | + | - | - |
82-a15 | P. costantinii | + | + | - | - |
61-b2 | P. juntendi | + | + | - | - |
66-3 | P. jessenii | + | + | - | - |
60-a4 | B. altitudinis | + | - | - | - |
62-a15 | P. peoriae | + | - | - | - |
66-a4 | P. costantinii | + | + | - | - |
82-a5 | P. granadensis | + | + | - | - |
66-a3 | P. costantini | + | + | - | - |
60-a14 | B. cereus | + | - | - | - |
60-a6 | B. cereus | + | + | - | - |
84-a4 | P. monteilii | + | + | - | - |
60-a1 | P. aryabhattai | + | + | + | - |
66-a9 | B. amyloliquefaciens | + | - | - | + |
74-4 | P. borealis | + | - | - | + |
82-a14 | B. siamensis | + | - | - | + |
82-a16 | B. siamensis | + | - | - | + |
83-a6 | P. umsongensis | - | + | - | - |
84-a16 | B. subtilis | - | - | - | + |
Table 1 Growth-promoting and disease-resistant properties of some active strains
菌株 Strain | 种属名 Top-hit taxon | 溶磷 Phosphorus solution | 固氮 Nitrogen fixation | 解钾 Potassium solution | 拮抗镰刀菌 Antagonistic fusarium |
---|---|---|---|---|---|
YIM B08401 | B. alba | + | + | - | + |
YIM B08402 | P. qingdaonensis | + | + | - | - |
82-a15 | P. costantinii | + | + | - | - |
61-b2 | P. juntendi | + | + | - | - |
66-3 | P. jessenii | + | + | - | - |
60-a4 | B. altitudinis | + | - | - | - |
62-a15 | P. peoriae | + | - | - | - |
66-a4 | P. costantinii | + | + | - | - |
82-a5 | P. granadensis | + | + | - | - |
66-a3 | P. costantini | + | + | - | - |
60-a14 | B. cereus | + | - | - | - |
60-a6 | B. cereus | + | + | - | - |
84-a4 | P. monteilii | + | + | - | - |
60-a1 | P. aryabhattai | + | + | + | - |
66-a9 | B. amyloliquefaciens | + | - | - | + |
74-4 | P. borealis | + | - | - | + |
82-a14 | B. siamensis | + | - | - | + |
82-a16 | B. siamensis | + | - | - | + |
83-a6 | P. umsongensis | - | + | - | - |
84-a16 | B. subtilis | - | - | - | + |
Fig. 4 Effect diagram of dissolved phosphorus(A), phosphorus solution(B), nitrogen fixation(C), zinc dissolution(D)of YIM B08401 and phosphorus dissolution(E), phosphorus solution(F), nitrogen fixation(G), and zinc dissolution(H)of YIM B08402
D/d | 溶磷指数Phosphorus dissolution | 解磷指数Phosphorus solution | 固氮指数Nitrogen fixation | 溶锌指数Zinc dissolution |
---|---|---|---|---|
YIM B08401 | 1.207±0.01b | 2.731±0.442a | 4.519±0.403a | 2.41±0.216a |
YIM B08402 | 2.316±0.159a | 2.730±0.423a | 2.595±0.884b | 2.71±0.375a |
Table 2 Nutrient transformation indexes of the strain
D/d | 溶磷指数Phosphorus dissolution | 解磷指数Phosphorus solution | 固氮指数Nitrogen fixation | 溶锌指数Zinc dissolution |
---|---|---|---|---|
YIM B08401 | 1.207±0.01b | 2.731±0.442a | 4.519±0.403a | 2.41±0.216a |
YIM B08402 | 2.316±0.159a | 2.730±0.423a | 2.595±0.884b | 2.71±0.375a |
Fig. 7 Determination of IAA activity of strain YIM B08402 On the left it is a blank control, and on the right it is the color rendering result of strain YIM B08402
Fig. 13 Effects on the fresh weight of above ground part(A), dry weight of above ground part(B), length of above ground part(C), fresh weight of root(D), dry weight of root(E), root length(F), stem diameter(G)of tomato plants under each treatment of strain YIM B08401 and YIM B08402
处理 Treatment | CK1 | CK2 | YIM B08401 | YIM B08402 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | |||||
pH | 7.22±0.03 c | 7.1±0.01 e | 7.16±0.02 d | 7.42±0.02 b | 7.49±0.02 a | 7.38±0.04 b | 7.16±0.05 d | 7.43±0.03 b | ||
有机质Organic matter/(g·kg) | 169.22±0.09 b | 183.51±1.14 a | 93.54±0.92 f | 99.01±0.15 e | 100.9±0.33 d | 90.92±0.15 g | 121.02±0.07 c | 120.94±0.14 c | ||
全氮 Total nitrogen/g·kg) | 4.19±0.01 b | 4.28±0.01 a | 3.37±0.01 f | 3.34±0.01 g | 3.42±0.02 e | 3.37±0.01 f | 3.77±0 d | 3.89±0.01 c | ||
全磷Total phosphorus/(g·kg) | 2.19±0.02 e | 2.29±0.03 cd | 2.34±0.04 c | 2.41±0.02 b | 2.26±0.02 d | 2.54±0.05 a | 2.45±0.04 b | 2.27±0 d | ||
全钾Total potassium/(g·kg) | 6.22±0.08 f | 6.99±0.11 d | 7.01±0.08 d | 7.83±0.13 a | 7.28±0.08 c | 7.32±0.11 c | 7.58±0.23 b | 6.74±0.03 e | ||
水解性氮Hydrolyzed nitrogen/(mg·kg) | 276.53±2.21 b | 296.33±1.11 a | 245.24±3.32 d | 241.4±0 e | 258.65±0 c | 241.4±3.32 e | 175.62±1.11 f | 238.85±1.11 e | ||
有效磷Available phosphorus/(mg·kg) | 102.17±2.78 a | 97.1±0.61 b | 67.75±1.72 e | 81.86±1 c | 67.75±0.24 e | 71.89±1.87 d | 72.51±1.65 d | 71.37±1.15 d | ||
速效钾Fast-acting potassium/(mg·kg) | 293.41±0.86 g | 400.87±3.19 f | 517.33±9.44 e | 603.08±7.04 b | 619.83±6.68 a | 543.47±12.12 d | 588.95±9.14 c | 612.87±1.83 ab |
Table 3 Physicochemical indexes in the rhizosphere soil of tomato plants
处理 Treatment | CK1 | CK2 | YIM B08401 | YIM B08402 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | |||||
pH | 7.22±0.03 c | 7.1±0.01 e | 7.16±0.02 d | 7.42±0.02 b | 7.49±0.02 a | 7.38±0.04 b | 7.16±0.05 d | 7.43±0.03 b | ||
有机质Organic matter/(g·kg) | 169.22±0.09 b | 183.51±1.14 a | 93.54±0.92 f | 99.01±0.15 e | 100.9±0.33 d | 90.92±0.15 g | 121.02±0.07 c | 120.94±0.14 c | ||
全氮 Total nitrogen/g·kg) | 4.19±0.01 b | 4.28±0.01 a | 3.37±0.01 f | 3.34±0.01 g | 3.42±0.02 e | 3.37±0.01 f | 3.77±0 d | 3.89±0.01 c | ||
全磷Total phosphorus/(g·kg) | 2.19±0.02 e | 2.29±0.03 cd | 2.34±0.04 c | 2.41±0.02 b | 2.26±0.02 d | 2.54±0.05 a | 2.45±0.04 b | 2.27±0 d | ||
全钾Total potassium/(g·kg) | 6.22±0.08 f | 6.99±0.11 d | 7.01±0.08 d | 7.83±0.13 a | 7.28±0.08 c | 7.32±0.11 c | 7.58±0.23 b | 6.74±0.03 e | ||
水解性氮Hydrolyzed nitrogen/(mg·kg) | 276.53±2.21 b | 296.33±1.11 a | 245.24±3.32 d | 241.4±0 e | 258.65±0 c | 241.4±3.32 e | 175.62±1.11 f | 238.85±1.11 e | ||
有效磷Available phosphorus/(mg·kg) | 102.17±2.78 a | 97.1±0.61 b | 67.75±1.72 e | 81.86±1 c | 67.75±0.24 e | 71.89±1.87 d | 72.51±1.65 d | 71.37±1.15 d | ||
速效钾Fast-acting potassium/(mg·kg) | 293.41±0.86 g | 400.87±3.19 f | 517.33±9.44 e | 603.08±7.04 b | 619.83±6.68 a | 543.47±12.12 d | 588.95±9.14 c | 612.87±1.83 ab |
[1] |
Chen SQ, Gao JS, Chen HH, et al. The role of long-term mineral and manure fertilization on P species accumulation and phosphate-solubilizing microorganisms in paddy red soils[J]. Soil, 2023, 9(1): 101-116.
doi: 10.5194/soil-9-101-2023 URL |
[2] |
Aloo BN, Tripathi V, Makumba BA, et al. Plant growth-promoting rhizobacterial biofertilizers for crop production: the past, present, and future[J]. Front Plant Sci, 2022, 13: 1002448.
doi: 10.3389/fpls.2022.1002448 URL |
[3] |
Aioub AAA, Elesawy AE, Ammar EE. Plant growth promoting rhizobacteria(PGPR)and their role in plant-parasitic nematodes control: a fresh look at an old issue[J]. J Plant Dis Prot, 2022, 129(6): 1305-1321.
doi: 10.1007/s41348-022-00642-3 |
[4] |
Asif M, Pervez A, Ahmad R. Role of melatonin and plant-growth-promoting rhizobacteria in the growth and development of plants[J]. CLEAN-Soil Air Water, 2019, 47(6): 1800459.
doi: 10.1002/clen.v47.6 URL |
[5] |
Chouyia FE, Romano I, Fechtali T, et al. P-solubilizing Streptomyces roseocinereus MS1B15 with multiple plant growth-promoting traits enhance barley development and regulate rhizosphere microbial population[J]. Front Plant Sci, 2020, 11: 1137.
doi: 10.3389/fpls.2020.01137 URL |
[6] |
Romano I, Ventorino V, Ambrosino P, et al. Development and application of low-cost and eco-sustainable bio-stimulant containing a new plant growth-promoting strain Kosakonia pseudosacchari TL13[J]. Front Microbiol, 2020, 11: 2044.
doi: 10.3389/fmicb.2020.02044 pmid: 33013749 |
[7] |
Chopra A, Kumar Vandana U, Rahi P, et al. Plant growth promoting potential of Brevibacterium sediminis A6 isolated from the tea rhizosphere of Assam, India[J]. Biocatal Agric Biotechnol, 2020, 27: 101610.
doi: 10.1016/j.bcab.2020.101610 URL |
[8] |
Jeyanthi V, Kanimozhi S. Plant growth promoting rhizobacteria(PGPR)- prospective and mechanisms: a review[J]. J Pure Appl Microbiol, 2018, 12(2): 733-749.
doi: 10.22207/JPAM URL |
[9] |
杨茉, 高婷, 李滟璟, 等. 辣椒根际促生菌的分离筛选及抗病促生特性研究[J]. 生物技术通报, 2020, 36(5): 104-109.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0840 |
Yang M, Gao T, Li YJ, et al. Isolation and screening of plant growth-promoting rhizobacteria in pepper and their disease-resistant growth-promoting characteristics[J]. Biotechnol Bull, 2020, 36(5): 104-109.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0840 |
|
[10] |
申云鑫, 施竹凤, 周旭东, 等. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0722 |
Shen YX, Shi ZF, Zhou XD, et al. Isolation, identification and bio-activity of three Bacillus strains with biocontrol function[J]. Biotechnol Bull, 2023, 39(3): 267-277. | |
[11] | 赵江源, 邹雪峰, 何翔, 等. 2株分泌型铁载体真菌对番茄青枯病的防效[J]. 植物保护, 2022, 48(4): 123-130. |
Zhao JY, Zou XF, He X, et al. Control effects of two siderophore-producing fungi against tomato bacterial wilt[J]. Plant Prot, 2022, 48(4): 123-130. | |
[12] |
Penrose DM, Glick BR. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria[J]. Physiol Plant, 2003, 118(1): 10-15.
pmid: 12702008 |
[13] |
Rani N, Kaur G, Kaur S, et al. Plant growth-promoting attributes of zinc solubilizing Dietzia maris isolated from polyhouse rhizospheric soil of punjab[J]. Curr Microbiol, 2022, 80(1): 48.
doi: 10.1007/s00284-022-03147-2 |
[14] | 申云鑫, 赵江源, 王楠, 等. 具促生功能拟蕈状芽孢杆菌(Bacillus paramycoides)SH-1464发酵条件优化及其活性[J]. 微生物学通报, 2023, 50(6): 2436-2451. |
Shen YX, Zhao JY, Wang N, et al. Optimization of fermentation conditions of Bacillus paramycoides SH-1464 with growth-promoting activity[J]. Microbiol China, 2023, 50(6): 2436-2451. | |
[15] |
Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material[J]. BioTechniques, 1991, 10(4): 506-513.
pmid: 1867860 |
[16] |
Kushwaha P, Srivastava R, Pandiyan K, et al. Enhancement in plant growth and zinc biofortification of chickpea(Cicer arietinum L.) by Bacillus altitudinis[J]. J Soil Sci Plant Nutr, 2021, 21(2): 922-935.
doi: 10.1007/s42729-021-00411-5 |
[17] |
Forni C, Riov J, Grilli Caiola M, et al. Indole-3-acetic acid(IAA)production by Arthrobacter species isolated from Azolla[J]. J Gen Microbiol, 1992, 138(2): 377-381.
pmid: 1564446 |
[18] |
Li ZY, Chang SP, Ye ST, et al. Differentiation of 1-aminocyclopropane-1-carboxylate(ACC)deaminase from its homologs is the key for identifying bacteria containing ACC deaminase[J]. FEMS Microbiol Ecol, 2015, 91(10): fiv112.
doi: 10.1093/femsec/fiv112 URL |
[19] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 146-195. |
Lu RK. Methods of soil agrochemical analysis[M]. China Agriculture Scientech Press, 2000: 146-195. | |
[20] |
Kumar A, Patel JS, Meena VS, et al. Plant growth-promoting rhizobacteria: strategies to improve abiotic stresses under sustainable agriculture[J]. J Plant Nutr, 2019, 42(11/12): 1402-1415.
doi: 10.1080/01904167.2019.1616757 URL |
[21] |
Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, et al. Common features of environmental and potentially beneficial plant-associated Burkholderia[J]. Microb Ecol, 2012, 63(2): 249-266.
doi: 10.1007/s00248-011-9929-1 pmid: 21850446 |
[22] |
Qu Q, Zhang ZY, Peijnenburg WJGM, et al. Rhizosphere microbiome assembly and its impact on plant growth[J]. J Agric Food Chem, 2020, 68(18): 5024-5038.
doi: 10.1021/acs.jafc.0c00073 URL |
[23] |
Guzmán-Guzmán P, Santoyo G. Action mechanisms, biodiversity, and omics approaches in biocontrol and plant growth-promotingPseudomonas: an updated review[J]. Biocontrol Sci Technol, 2022, 32(5): 527-550.
doi: 10.1080/09583157.2022.2066630 URL |
[24] |
Bhakat K, Chakraborty A, Islam E. Characterization of zinc solubilization potential of arsenic tolerant Burkholderia spp. isolated from rice rhizospheric soil[J]. World J Microbiol Biotechnol, 2021, 37(3): 39.
doi: 10.1007/s11274-021-03003-8 |
[25] |
Zhang XC, Wang NN, Hou MM, et al. Contribution of K solubilising bacteria(Burkholderia sp.)promotes tea plant growth(Camellia sinesis)and leaf polyphenols content by improving soil available K level[J]. Funct Plant Biol, 2022, 49(3): 283-294.
doi: 10.1071/FP21193 URL |
[26] |
Zboralski A, Filion M. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp[J]. Comput Struct Biotechnol J, 2020, 18: 3539-3554.
doi: 10.1016/j.csbj.2020.11.025 URL |
[27] |
Mohapatra B, Nain S, Sharma R, et al. Functional genome mining and taxono-genomics reveal eco-physiological traits and species distinctiveness of aromatic-degrading Pseudomonas bharatica sp. nov[J]. Environ Microbiol Rep, 2022, 14(3): 464-474.
doi: 10.1111/emi4.v14.3 URL |
[28] |
Singh P, Singh RK, Zhou Y, et al. Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: a review[J]. J Plant Interact, 2022, 17(1): 220-238.
doi: 10.1080/17429145.2022.2029963 URL |
[29] | 周杨, 邓名荣, 杜娟, 等. 我国农业微生物产业发展研究[J]. 中国工程科学, 2022, 24(5): 197-206. |
Zhou Y, Deng MR, Du J, et al. Development of agricultural microbial industry in China[J]. Strateg Study CAE, 2022, 24(5): 197-206. | |
[30] |
Laha A, Bhattacharyya S, Sengupta S, et al. Investigation of arsenic-resistant, arsenite-oxidizing bacteria for plant growth promoting traits isolated from arsenic contaminated soils[J]. Arch Microbiol, 2021, 203(7): 4677-4692.
doi: 10.1007/s00203-021-02460-x |
[31] |
Wang CR, Huang YC, Yang XR, et al. Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium[J]. Chemosphere, 2020, 252: 126603.
doi: 10.1016/j.chemosphere.2020.126603 URL |
[32] |
Liu HK, Huang HY, Liang K, et al. Characterization of a cadmium-resistant functional bacteria(Burkholderia sp. SRB-1)and mechanism analysis at physiochemical and genetic level[J]. Environ Sci Pollut Res Int, 2023, 30(32): 78408-78422.
doi: 10.1007/s11356-023-27824-2 |
[33] |
Barrera-Galicia GC, Peniche-Pavía HA, Peña-Cabriales JJ, et al. Metabolic footprints of Burkholderia sensu lato rhizosphere bacteria active against maize Fusarium pathogens[J]. Microorganisms, 2021, 9(10): 2061.
doi: 10.3390/microorganisms9102061 URL |
[34] |
Alam K, Zhao YM, Lu XF, et al. Isolation, complete genome sequencing and in silico genome mining of Burkholderia for secondary metabolites[J]. BMC Microbiol, 2022, 22(1): 323.
doi: 10.1186/s12866-022-02692-x |
[35] |
Adaikpoh BI, Fernandez HN, Eustáquio AS. Biotechnology approaches for natural product discovery, engineering, and production based on Burkholderia bacteria[J]. Curr Opin Biotechnol, 2022, 77: 102782.
doi: 10.1016/j.copbio.2022.102782 URL |
[36] | Aziz NA, Shaffie S, Rahman AYA, et al. Draft genome sequence of plant growth-promoting rhizobacterium Burkholderia sp. strain USMB20, isolated from nodules of Mucuna bracteata[J]. Microbiol Resour Announc, 2021, 10(11): e01051-e01020. |
[1] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[2] | LIU Xiao-li, TONG Zhen-yi, ZHAO Liang, YIN Li, LIU Chen-guang. Research Progress in Non-antibiotic Active Substances Against Helicobacter pylori [J]. Biotechnology Bulletin, 2022, 38(9): 96-105. |
[3] | WANG Zi-yan, WANG Jian, ZHANG Lun, GUI Shui-qing, LU Xue-mei. Study on Antibacterial Stability of Musca domestica Cecropin-MDC Against Salmonella typhimurium [J]. Biotechnology Bulletin, 2022, 38(3): 149-156. |
[4] | WANG Xiao-he, GU Xi-rong, QI Shun-ju, LI Jie, CUI Yao, LI De-xia, YANG Li-hui. Antioxidant Activity,Antibacterial Activity and Volatile Components of Extracts from the Branches and Leaves of Torreya fargesii Franch. [J]. Biotechnology Bulletin, 2021, 37(8): 152-161. |
[5] | CAI Guo-lei, LU Xiao-kai, LOU Shui-zhu, YANG Hai-ying, DU Gang. Classification and Identification of Bacillus LM Based on Whole Genome and Study on Its Antibacterial Principle [J]. Biotechnology Bulletin, 2021, 37(8): 176-185. |
[6] | GONG Xiao-hui, YANG Min, LI Shu-ting, LIN Sheng-hao, XU Wen-tao. Progress on Antibacterial Mechanism,Activity and Application of Silver Nanoclusters [J]. Biotechnology Bulletin, 2021, 37(5): 212-220. |
[7] | YANG Yue, TAO Yan, XIE Jing, QIAN Yun-fang. Biosynthesis of Ctenopharyngodon idella C-type Lysozyme Based on Recombinant Pichia pastoris and Its Antibacterial Activity [J]. Biotechnology Bulletin, 2021, 37(12): 169-179. |
[8] | PAN Jing-yu, CHEN Jia-le, QIAN Yu-cheng, LIU Xin, YANG Hao-ning, LIU Li, WEI Bu-yun, ZHAO Hong-xin. Characteristics of Aureobasidium sp. 3A00493 from Deep Sea Sediment and Characteristic Analysis of Its Extracellular Polysaccharide [J]. Biotechnology Bulletin, 2021, 37(12): 71-81. |
[9] | LUO Ya-jun, SUN Hong-min, HE Ning, YUAN Li-jie, XIE Yun-ying. Isolation and Antibacterial Activity of Actinomycetes from the Nodules and Rhizosphere Soil of Hippophae rhamnoides in Tibet [J]. Biotechnology Bulletin, 2021, 37(11): 225-236. |
[10] | WANG Zhi-xin, LIU Yang, ZHOU Jing-bo, HONG Dan, LU Lei-zhen, NING Ya-wei, JIA Ying-min. Optimization of Quantitative Determination of Bacitracin Based on Turbidimetric Method [J]. Biotechnology Bulletin, 2020, 36(5): 92-97. |
[11] | ZHAO Zhen, WANG Sha-sha, LÜ Xing-xing, TAO Yan, XIE Jing, QIAN Yun-fang. Heterologous Expression of Cyclina sinensis Mytimacin Antibacterial Peptide Based on Recombinant Pichia pastoris [J]. Biotechnology Bulletin, 2020, 36(5): 150-158. |
[12] | CAI Juan, LIU Liu, WANG Ling-jun, CAO Jian-ping, ZHENG Ming-hui, LIU Hui. Screening aoattacin Gene from Amiota okadai Based on Transcriptome Sequencing,Expression of It in Insect Cells and Antibacterial Activity Identification [J]. Biotechnology Bulletin, 2019, 35(9): 118-124. |
[13] | RANG Feng-ju, REN Yan-li, ZHANG Wei, OUYANG Yan. Isolation,Screening and Identification of Active Endophytic Fungi from Yili Wild Walnut [J]. Biotechnology Bulletin, 2019, 35(9): 218-223. |
[14] | ZHANG Sheng-liang, CHU Xiao-xiao, ZHAO You-xing, KONG Fan-dong, HUANG Xiao-long. Isolation,Identification,and Antibacterial Activity of Fungi Associated with Marine Organisms [J]. Biotechnology Bulletin, 2019, 35(3): 59-64. |
[15] | LIU Jin-lan, YANG Xue, LI Shuang-shuang, ZHANG Yu-ming, LIU Feng-song, TANG Ting, LI Hong-quan. Eukaryotic Expression of Antibacterial Peptide Domesticin from Musca domestica in Pichia Pastoris and Antibacterial Activity Identification [J]. Biotechnology Bulletin, 2019, 35(2): 109-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||