Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (4): 40-51.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1052
Previous Articles Next Articles
PENG Yu-jia(), LI Wen-cui, LIU Yong-bo()
Received:
2023-11-09
Online:
2024-04-26
Published:
2024-04-30
Contact:
LIU Yong-bo
E-mail:z2544931043@163.com;liuyb@craes.org.cn
PENG Yu-jia, LI Wen-cui, LIU Yong-bo. Research Progress in the Evolution Mechanisms for Insect Resistance to Insecticides and Bt-transgenic Plants[J]. Biotechnology Bulletin, 2024, 40(4): 40-51.
Fig.1 Mechanisms of insect resistance to insecticides and Bt-transgenic plants The evolution mechanisms of insects resistance to chemical insecticides are mainly through mutation and metabolic resistance of target sites with mutation sites in acetylcholinesterase(AChE), voltage-gated sodium channel(VGSC), gamma-aminobutyric acid(GABA)receptor, and nicotinic acetylcholine receptor(nAChR), and with metabolic detoxification of CncC/Maf trans-acting factor and the MAPK/CREB signaling pathways through regulating the overexpression of the P450 genes CYP321A8 and CYP6CM1, respectively. Insects resist to Bt-transgenic plants through downregulating midgut binding receptors and decreasing midgut protease activity in insects, with mutations or down-regulation of the expression of calreticulin(CAD), aminopeptidase N(APN), ABC transporter proteins, alkaline phosphatase(ALP), and down-regulation of the expression of serine proteases. Insects resist to microbial insecticides through activating immune system and changing symbiotic flora in insects, with the expression changes of peptidoglycan recognition protein(PGRP)or down-regulation of midgut protein receptor expression by the MAPK/TFs signaling pathways, the expression enhance of antimicrobial peptides(AMPs)against pathogenic microorganisms by Toll and IMD immune signaling pathways, and the melanin formation mediated by serine protease cascades regulating phenoloxidase(PO)
抗性机制Resistance mechanism | 靶标位点/代谢类型Target sites/Metabolic types | 参考文献References |
---|---|---|
靶标位点抗性Target site resistance | 乙酰胆碱酯酶 Acetylcholinesterase | [ |
电压门控钠离子通道 Voltage-gated sodium channel | [ | |
γ-氨基丁酸受体 γ-aminobutyric acid receptor | [ | |
烟碱乙酰胆碱受体 Nicotine acetylcholine receptor | [ | |
代谢抗性Metabolic resistance | 细胞色素P450单加氧酶 Cytochrome p450 monooxygenase | [ |
谷胱甘肽S-转移酶 Glutathione S-transferase | [ | |
羧酸酯酶 Carboxylesterases | [ |
Table 1 Resistance mechanisms of insects to chemical insecticides
抗性机制Resistance mechanism | 靶标位点/代谢类型Target sites/Metabolic types | 参考文献References |
---|---|---|
靶标位点抗性Target site resistance | 乙酰胆碱酯酶 Acetylcholinesterase | [ |
电压门控钠离子通道 Voltage-gated sodium channel | [ | |
γ-氨基丁酸受体 γ-aminobutyric acid receptor | [ | |
烟碱乙酰胆碱受体 Nicotine acetylcholine receptor | [ | |
代谢抗性Metabolic resistance | 细胞色素P450单加氧酶 Cytochrome p450 monooxygenase | [ |
谷胱甘肽S-转移酶 Glutathione S-transferase | [ | |
羧酸酯酶 Carboxylesterases | [ |
抗性机制Resistance mechanism | 主要因素Major factors | 参考文献References |
---|---|---|
免疫反应增强 Enhances immune response | 激活模式识别受体,进而激活Toll和IMD信号通路调控抗菌肽表达 Activate pattern recognition receptors, thereby activating Toll and IMD signaling pathways to regulate antimicrobial peptide expression | [ |
酚氧化酶原级联形成黑色素,发挥包囊作用清除微生物 Prophenoloxidase cascade forms melanins that act as an encapsulation to remove microorganisms | [ | |
共生菌群抑制微生物侵染 Symbiotic flora inhibits microbial infestation | 存在高多样性和丰度的共生菌群或优势菌 Symbiotic flora or dominant bacteria having high diversity and abundance | [ |
共生菌群产生抗菌物质 Symbiotic flora produces antimicrobial substances | 抗菌物质发挥作用抵御微生物 Antimicrobial substances resist against microorganisms | [ |
Table 2 Resistance mechanisms of insects to microbial insecticides
抗性机制Resistance mechanism | 主要因素Major factors | 参考文献References |
---|---|---|
免疫反应增强 Enhances immune response | 激活模式识别受体,进而激活Toll和IMD信号通路调控抗菌肽表达 Activate pattern recognition receptors, thereby activating Toll and IMD signaling pathways to regulate antimicrobial peptide expression | [ |
酚氧化酶原级联形成黑色素,发挥包囊作用清除微生物 Prophenoloxidase cascade forms melanins that act as an encapsulation to remove microorganisms | [ | |
共生菌群抑制微生物侵染 Symbiotic flora inhibits microbial infestation | 存在高多样性和丰度的共生菌群或优势菌 Symbiotic flora or dominant bacteria having high diversity and abundance | [ |
共生菌群产生抗菌物质 Symbiotic flora produces antimicrobial substances | 抗菌物质发挥作用抵御微生物 Antimicrobial substances resist against microorganisms | [ |
类型 Type | 抗性机制 Resistance mechanism | 关键因素 Key factor | 昆虫 Insect | 减缓措施 Mitigation measure | 参考文献 References |
---|---|---|---|---|---|
化学杀虫剂 Chemical insecticides | 乙酰胆碱酯酶突变 Acetylcholinesterase mutation | 乙酰胆碱酯酶 Acetylcholinesterase | 甜菜夜蛾Spodoptera exigua、马铃薯甲虫Leptinotarsa decemlineata、褐飞虱Nilaparvata lugens | 轮换使用杀虫剂 Rotated use of insecticides | [ |
电压门控钠离子通道突变 Voltage-gated sodium channel mutation | 电压门控钠离子通道 Voltage-gated sodium channel | 绿盲蝽Apolygus lucorum、烟草甲虫Lasioderma serricorne | 减少杀虫剂使用、合理使用增效剂 Reducing the use of insecticides, and reasonable use of synergists | [ | |
γ-氨基丁酸受体突变 γ-aminobutyric acid receptor mutation | γ-氨基丁酸受体 γ-aminobutyric acid receptor | 灰飞虱Laodelphax striatellus、白背飞虱Sogatella furcifera、褐飞虱Nilaparvata lugens | 轮换使用杀虫剂 Rotated use of insecticides | [ | |
烟碱乙酰胆碱受体突变 Nicotine acetylcholine receptor mutation | 烟碱乙酰胆碱受体 Nicotine acetylcholine receptor | 桃蚜Myzus persicae、西花蓟马Frankliniella occidentalis | 轮换使用杀虫剂 Rotated use of insecticides | [ | |
P450解毒酶过表达 P450 detoxification enzyme overexpression | P450解毒酶 P450 detoxification enzyme | 烟粉虱Bemisia tabaci、棉铃虫Helicoverpa armigera | 混合使用杀虫剂、合理使用增效剂 Mixed use of insecticides, and reasonable use of synergists | [ | |
谷胱甘肽S-转移酶过表达 Glutathione S-transferase overexpression | 谷胱甘肽S-转移酶 Glutathione S-transferase | 小菜蛾Plutella xylostella、褐飞虱Nilaparvata lugens、斜纹夜蛾Spodoptera litura | 轮换使用杀虫剂、合理使用增效剂、减少杀虫剂使用 Rotated use of insecticides, reasonable use of synergists, and reducing the use of insecticides | [ | |
羧酸酯酶表达上调 Upregulation of carboxylesterase expression | 羧酸酯酶 Carboxylesterases | 桃蚜Myzus persicae、棉蚜Aphis gossypii | 轮换使用杀虫剂 Rotated use of insecticides | [ | |
微生物杀虫剂 Microbial insecticides | 免疫反应增强 Enhance immune response | 肽聚糖识别蛋白Peptidoglycan recognition proteins、抗菌肽Antimicrobial peptide | 小菜蛾Plutella xylostella、舞毒蛾Lymantria dispar | 轮换使用杀虫剂、基因工程改造病毒基因组 Rotated use of insecticides,and genetic modification of virus genomes | [ |
共生菌群抑制微生物侵染 Symbiotic flora inhibits microbial infestation | 泛菌属 Pantoea sp. | 梨小食心虫Grapholita molesta | 微生物杀虫剂联合使用 Combined use of microbial insecticides | [ | |
共生菌群产生抗菌物质 Symbiotic flora produces antimicrobial substances | 有机酸代谢物 Organic acid metabolites | 葱蝇Delia antiqua | 轮换使用杀虫剂 Rotated use of insecticides | [ | |
转Bt基因植物 Bt transgenic plants | 中肠蛋白酶活性降低 Decreased midgut protease activity | 胰蛋白酶Trypsin、胰凝乳蛋白酶Chymotrypsin | 小菜蛾Plutella xylostella、 棉铃虫Helicoverpa armigera | 双价或多价转基因植物抗虫、RNAi技术与Bt毒素协同抗虫 Bivalent or multivalent transgenic plants with insect resistance,RNAi technology and Bt toxin synergistically | [ |
中肠受体蛋白基因突变或表达下调 Midgut receptor protein gene mutation or downregulation expression | 氨肽酶N Aminopeptidase N、ABC转运蛋白ATP-binding cassette transporter | 二化螟Chilo suppressalis、草地贪夜蛾Spodoptera frugiperda | 双价或多价转基因植物抗虫、“高剂量/庇护所”策略 Bivalent or multivalent transgenic plants with insect resistance,“High-dose/shelter” strategy | [ |
Table 3 Resistance mechanisms of insects and measures to delay resistance evolution of insects
类型 Type | 抗性机制 Resistance mechanism | 关键因素 Key factor | 昆虫 Insect | 减缓措施 Mitigation measure | 参考文献 References |
---|---|---|---|---|---|
化学杀虫剂 Chemical insecticides | 乙酰胆碱酯酶突变 Acetylcholinesterase mutation | 乙酰胆碱酯酶 Acetylcholinesterase | 甜菜夜蛾Spodoptera exigua、马铃薯甲虫Leptinotarsa decemlineata、褐飞虱Nilaparvata lugens | 轮换使用杀虫剂 Rotated use of insecticides | [ |
电压门控钠离子通道突变 Voltage-gated sodium channel mutation | 电压门控钠离子通道 Voltage-gated sodium channel | 绿盲蝽Apolygus lucorum、烟草甲虫Lasioderma serricorne | 减少杀虫剂使用、合理使用增效剂 Reducing the use of insecticides, and reasonable use of synergists | [ | |
γ-氨基丁酸受体突变 γ-aminobutyric acid receptor mutation | γ-氨基丁酸受体 γ-aminobutyric acid receptor | 灰飞虱Laodelphax striatellus、白背飞虱Sogatella furcifera、褐飞虱Nilaparvata lugens | 轮换使用杀虫剂 Rotated use of insecticides | [ | |
烟碱乙酰胆碱受体突变 Nicotine acetylcholine receptor mutation | 烟碱乙酰胆碱受体 Nicotine acetylcholine receptor | 桃蚜Myzus persicae、西花蓟马Frankliniella occidentalis | 轮换使用杀虫剂 Rotated use of insecticides | [ | |
P450解毒酶过表达 P450 detoxification enzyme overexpression | P450解毒酶 P450 detoxification enzyme | 烟粉虱Bemisia tabaci、棉铃虫Helicoverpa armigera | 混合使用杀虫剂、合理使用增效剂 Mixed use of insecticides, and reasonable use of synergists | [ | |
谷胱甘肽S-转移酶过表达 Glutathione S-transferase overexpression | 谷胱甘肽S-转移酶 Glutathione S-transferase | 小菜蛾Plutella xylostella、褐飞虱Nilaparvata lugens、斜纹夜蛾Spodoptera litura | 轮换使用杀虫剂、合理使用增效剂、减少杀虫剂使用 Rotated use of insecticides, reasonable use of synergists, and reducing the use of insecticides | [ | |
羧酸酯酶表达上调 Upregulation of carboxylesterase expression | 羧酸酯酶 Carboxylesterases | 桃蚜Myzus persicae、棉蚜Aphis gossypii | 轮换使用杀虫剂 Rotated use of insecticides | [ | |
微生物杀虫剂 Microbial insecticides | 免疫反应增强 Enhance immune response | 肽聚糖识别蛋白Peptidoglycan recognition proteins、抗菌肽Antimicrobial peptide | 小菜蛾Plutella xylostella、舞毒蛾Lymantria dispar | 轮换使用杀虫剂、基因工程改造病毒基因组 Rotated use of insecticides,and genetic modification of virus genomes | [ |
共生菌群抑制微生物侵染 Symbiotic flora inhibits microbial infestation | 泛菌属 Pantoea sp. | 梨小食心虫Grapholita molesta | 微生物杀虫剂联合使用 Combined use of microbial insecticides | [ | |
共生菌群产生抗菌物质 Symbiotic flora produces antimicrobial substances | 有机酸代谢物 Organic acid metabolites | 葱蝇Delia antiqua | 轮换使用杀虫剂 Rotated use of insecticides | [ | |
转Bt基因植物 Bt transgenic plants | 中肠蛋白酶活性降低 Decreased midgut protease activity | 胰蛋白酶Trypsin、胰凝乳蛋白酶Chymotrypsin | 小菜蛾Plutella xylostella、 棉铃虫Helicoverpa armigera | 双价或多价转基因植物抗虫、RNAi技术与Bt毒素协同抗虫 Bivalent or multivalent transgenic plants with insect resistance,RNAi technology and Bt toxin synergistically | [ |
中肠受体蛋白基因突变或表达下调 Midgut receptor protein gene mutation or downregulation expression | 氨肽酶N Aminopeptidase N、ABC转运蛋白ATP-binding cassette transporter | 二化螟Chilo suppressalis、草地贪夜蛾Spodoptera frugiperda | 双价或多价转基因植物抗虫、“高剂量/庇护所”策略 Bivalent or multivalent transgenic plants with insect resistance,“High-dose/shelter” strategy | [ |
[1] | Allwood JW, Williams A, Uthe H, et al. Unravelling plant responses to stress-the importance of targeted and untargeted metabolomics[J]. Metabolites, 2021, 11(8): 558. |
[2] |
Luo D, Xia FJ, He MR, et al. Sublethal effects of the cis-nitromethylene neonicotinoid insecticide cycloxaprid on the white-backed planthopper, Sogatella furcifera(Hemiptera: Delphacidae)[J]. Crop Prot, 2023, 166: 106172.
doi: 10.1016/j.cropro.2022.106172 URL |
[3] |
Lv HX, Ling SS, Guo ZM, et al. Effects of lufenuron treatments on the growth and development of Spodoptera frugiperda(Lepidoptera: Noctuidae)[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2023, 263: 109499.
doi: 10.1016/j.cbpc.2022.109499 URL |
[4] |
Zhang MD, Wu SY, Yan JJ, et al. Establishment of Beauveria bassiana as a fungal endophyte in potato plants and its virulence against potato tuber moth, Phthorimaea operculella(Lepidoptera: Gelechiidae)[J]. Insect Sci, 2023, 30(1): 197-207.
doi: 10.1111/ins.v30.1 URL |
[5] | Ahmad JN, Ahmad SJN, Jafir M, et al. Management of American bollworm(Helicoverpa armigera)using native isolated Spodoptera litura associated nucleopolyhedro viruses(slitnpv)[J]. J Anim Plant Sci, 2022, 32(4): 968-976. |
[6] |
Jin YM, Ma R, Yu ZJ, et al. Transgenic japonica rice expressing the cry1C gene is resistant to striped stem borers in Northeast China[J]. J Integr Agric, 2021, 20(11): 2837-2848.
doi: 10.1016/S2095-3119(20)63279-8 URL |
[7] |
Zhao SY, Yang XM, Liu DZ, et al. Performance of the domestic Bt corn event expressing pyramided Cry1Ab and Vip3Aa19 against the invasive Spodoptera frugiperda(J. E. Smith)in China[J]. Pest Manag Sci, 2023, 79(3): 1018-1029.
doi: 10.1002/ps.v79.3 URL |
[8] |
Liu YT, Song XY, Zeng B, et al. The evolution of insecticide resistance in the white backed planthopper Sogatella furcifera(Horvath)of China in the period 2014-2022[J]. Crop Prot, 2023, 172: 106312.
doi: 10.1016/j.cropro.2023.106312 URL |
[9] | Ali S, Sajjad A, Shakeel Q, et al. Influence of bacterial secondary symbionts in Sitobion avenae on its survival fitness against entomopathogenic fungi, Beauveria bassiana and Metarhizium brunneum[J]. Insects, 2022, 13(11): 1037. |
[10] |
Reinders JD, Reinders EE, Robinson EA, et al. Evidence of western corn rootworm(Diabrotica virgifera virgifera LeConte)field-evolved resistance to Cry3Bb1 + Cry34/35Ab1 maize in Nebraska[J]. Pest Manag Sci, 2022, 78(4): 1356-1366.
doi: 10.1002/ps.v78.4 URL |
[11] |
马玉婷, 魏娟, 李相敢. 昆虫抗药性检测方法研究进展[J]. 生物技术进展, 2017, 7(4): 272-278, 353.
doi: 10.19586/j.2095-2341.2016.0153 |
Ma YT, Wei J, Li XG. Advance on detection method of insecticide resistance[J]. Curr Biotechnol, 2017, 7(4): 272-278, 353.
doi: 10.19586/j.2095-2341.2016.0153 |
|
[12] |
Hubhachen Z, Pointon H, Perkins JA, et al. Resistance to multiple insecticide classes in the vinegar fly Drosophila melanogaster(Diptera: Drosophilidae)in Michigan vineyards[J]. J Econ Entomol, 2022, 115(6): 2020-2028.
doi: 10.1093/jee/toac155 URL |
[13] |
Van den Berg J, du Plessis H. Chemical control and insecticide resistance in Spodoptera frugiperda(Lepidoptera: Noctuidae)[J]. J Econ Entomol, 2022, 115(6): 1761-1771.
doi: 10.1093/jee/toac108 URL |
[14] |
Ihara M, Buckingham SD, Matsuda K, et al. Modes of action, resistance and toxicity of insecticides targeting nicotinic acetylcholine receptors[J]. Curr Med Chem, 2017, 24(27): 2925-2934.
doi: 10.2174/0929867324666170206142019 pmid: 28176635 |
[15] |
Teng HY, Zuo YY, Jin Z, et al. Associations between acetylcholinesterase-1 mutations and chlorpyrifos resistance in beet armyworm, Spodoptera exigua[J]. Pestic Biochem Physiol, 2022, 184: 105105.
doi: 10.1016/j.pestbp.2022.105105 URL |
[16] |
Menozzi P, Shi MA, Lougarre A, et al. Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations[J]. BMC Evol Biol, 2004, 4: 4.
doi: 10.1186/1471-2148-4-4 URL |
[17] |
Zhang Y, Yang B, Li J, et al. Point mutations in acetylcholinesterase 1 associated with chlorpyrifos resistance in the brown planthopper, Nilaparvata lugens Stål[J]. Insect Mol Biol, 2017, 26(4): 453-460.
doi: 10.1111/imb.12309 pmid: 28407384 |
[18] |
Rinkevich FD, Du YZ, Dong K. Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids[J]. Pestic Biochem Physiol, 2013, 106(3): 93-100.
pmid: 24019556 |
[19] |
Fukazawa N, Takahashi R, Matsuda H, et al. Sodium channel mutations(T929I And F1534S)found in pyrethroid-resistant strains of the cigarette beetle, Lasioderma Serricorne(Coleoptera: Anobiidae)[J]. J Pestic Sci, 2021, 46(4): 360-365.
doi: 10.1584/jpestics.D21-033 pmid: 34908896 |
[20] | Gao JP, Chen HM, Shi H, et al. Correlation between adult pyrethroid resistance and knockdown resistance(Kdr)Mutations in Aedes albopictus(Diptera: Culicidae)field populations in China[J]. Infect Dis Poverty, 2018, 7(1): 86. |
[21] |
Buckingham SD, Ihara M, Sattelle DB, et al. Mechanisms of action, resistance and toxicity of insecticides targeting GABA receptors[J]. Curr Med Chem, 2017, 24(27): 2935-2945.
doi: 10.2174/0929867324666170613075736 pmid: 28606041 |
[22] |
Ffrench-Constant RH, Mortlock DP, Shaffer CD, et al. Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate gamma-aminobutyric acid subtype A receptor locus[J]. Proc Natl Acad Sci USA, 1991, 88(16): 7209-7213.
pmid: 1651498 |
[23] |
Nakao T. Mechanisms of resistance to insecticides targeting RDL GABA receptors in planthoppers[J]. Neurotoxicology, 2017, 60: 293-298.
doi: S0161-813X(16)30033-X pmid: 27000517 |
[24] | Zhang YC, Huang QT, Sheng CW, et al. G3'MTMD3 in the insect GABA receptor subunit, RDL, confers resistance to broflanilide and fluralaner[J]. PLoS Genet, 2023, 19(6): e1010814. |
[25] |
Xu X, Ding Q, Wang X, et al. V101I and R81T mutations in the nicotinic acetylcholine receptor β1 subunit are associated with neonicotinoid resistance in Myzus persicae[J]. Pest Manag Sci, 2022, 78(4): 1500-1507.
doi: 10.1002/ps.v78.4 URL |
[26] |
Munkhbayar O, Liu N, Li M, et al. First report of voltage-gated sodium channel M918V and molecular diagnostics of nicotinic acetylcholine receptor R81T in the cotton aphid[J]. J Appl Entomol, 2021, 145(3): 261-269.
doi: 10.1111/jen.v145.3 URL |
[27] |
Yin C, Gui LY, Du TH, et al. Knockdown of the nicotinic acetylcholine receptor β1 subunit decreases the susceptibility to five neonicotinoid insecticides in whitefly(Bemisia tabaci)[J]. J Agric Food Chem, 2023, 71(19): 7221-7229.
doi: 10.1021/acs.jafc.3c00782 URL |
[28] |
Shan TS, Zhang HH, Chen CY, et al. Low expression levels of nicotinic acetylcholine receptor subunits Boα1 and Boβ1 are associated with imidacloprid resistance in Bradysia odoriphaga[J]. Pest Manag Sci, 2020, 76(9): 3038-3045.
doi: 10.1002/ps.v76.9 URL |
[29] |
Zeng B, Liu YT, Feng ZR, et al. The overexpression of cytochrome P450 genes confers buprofezin resistance in the brown planthopper, Nilaparvata lugens(Stål)[J]. Pest Manag Sci, 2023, 79(1): 125-133.
doi: 10.1002/ps.v79.1 URL |
[30] | Liang JJ, Yang J, Hu JY, et al. Cytpchrome P450 CYP4G68 is associated with imidacloprid and thiamethoxam resistance in field whitefly, Bemisia tabaci(hemiptera: Gennadius)[J]. Agriculture, 2022, 12(4): 473. |
[31] |
Wei XG, Hu JY, Yang J, et al. Cytochrome P450 CYP6DB3 was involved in thiamethoxam and imidacloprid resistance in Bemisia tabaci Q(Hemiptera: Aleyrodidae)[J]. Pestic Biochem Physiol, 2023, 194: 105468.
doi: 10.1016/j.pestbp.2023.105468 URL |
[32] |
You CM, Zhang LL, Song JJ, et al. The variation of a cytochrome P450 gene, CYP6G4, drives the evolution of Musca domestica L.(Diptera: Muscidae)resistance to insecticides in China[J]. Int J Biol Macromol, 2023, 236: 123399.
doi: 10.1016/j.ijbiomac.2023.123399 URL |
[33] | Hu B, Huang H, Hu SZ, et al. Changes in both trans- and cis-regulatory elements mediate insecticide resistance in a lepidopteron pest, Spodoptera exigua[J]. PLoS Genet, 2021, 17(3): e1009403. |
[34] |
Yang X, Deng S, Wei XG, et al. MAPK-directed activation of the whitefly transcription factor CREB leads to P450-mediated imidacloprid resistance[J]. Proc Natl Acad Sci USA, 2020, 117(19): 10246-10253.
doi: 10.1073/pnas.1913603117 pmid: 32327610 |
[35] |
Li YF, Sun H, Tian Z, et al. The determination of Plutella xylostella(L.)GSTs(PxGSTs)involved in the detoxification metabolism of Tolfenpyrad[J]. Pest Manag Sci, 2020, 76(12): 4036-4045.
doi: 10.1002/ps.v76.12 URL |
[36] |
Tao F, Si FL, Hong R, et al. Glutathione S-transferase(GST)genes and their function associated with pyrethroid resistance in the malaria vector Anopheles sinensis[J]. Pest Manag Sci, 2022, 78(10): 4127-4139.
doi: 10.1002/ps.v78.10 URL |
[37] |
Lu XP, Wang LL, Huang Y, et al. The epsilon glutathione S-transferases contribute to the malathion resistance in the oriental fruit fly, Bactrocera dorsalis(Hendel)[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2016, 180: 40-48.
doi: 10.1016/j.cbpc.2015.11.001 URL |
[38] |
Hu B, Huang H, Wei Q, et al. Transcription factors CncC/Maf and AhR/ARNT coordinately regulate the expression of multiple GSTs conferring resistance to chlorpyrifos and cypermethrin in Spodoptera exigua[J]. Pest Manag Sci, 2019, 75(7): 2009-2019.
doi: 10.1002/ps.2019.75.issue-7 URL |
[39] |
Hu C, Liu YX, Zhang SP, et al. Transcription factor AhR regulates glutathione S-transferases conferring resistance to lambda-cyhalothrin in Cydia pomonella[J]. J Agric Food Chem, 2023, 71(13): 5230-5239.
doi: 10.1021/acs.jafc.3c00002 URL |
[40] |
Hemingway J, Hawkes NJ, McCarroll L, et al. The molecular basis of insecticide resistance in mosquitoes[J]. Insect Biochem Mol Biol, 2004, 34(7): 653-665.
doi: 10.1016/j.ibmb.2004.03.018 URL |
[41] |
Cui F, Lin Z, Wang HS, et al. Two single mutations commonly cause qualitative change of nonspecific carboxylesterases in insects[J]. Insect Biochem Mol Biol, 2011, 41(1): 1-8.
doi: 10.1016/j.ibmb.2010.09.004 URL |
[42] |
Srigiriraju L, Semtner PJ, Anderson TD, et al. Esterase-based resistance in the tobacco-adapted form of the green peach aphid, Myzus persicae(Sulzer)(Hemiptera: Aphididae)in the eastern United States[J]. Arch Insect Biochem Physiol, 2009, 72(2): 105-123.
doi: 10.1002/arch.v72:2 URL |
[43] |
Lu K, Li YM, Xiao TX, et al. The metabolic resistance of Nilaparvata lugens to chlorpyrifos is mainly driven by the carboxylesterase CarE17[J]. Ecotoxicol Environ Saf, 2022, 241: 113738.
doi: 10.1016/j.ecoenv.2022.113738 URL |
[44] |
Gong YH, Ai GM, Li M, et al. Functional characterization of carboxylesterase gene mutations involved in Aphis gossypii resistance to organophosphate insecticides[J]. Insect Mol Biol, 2017, 26(6): 702-714.
doi: 10.1111/imb.12331 pmid: 28799241 |
[45] |
Bai LS, Xu JJ, Zhao CX, et al. Enhanced hydrolysis of β-cypermethrin caused by deletions in the glycin-rich region of carboxylesterase 001G from Helicoverpa armigera[J]. Pest Manag Sci, 2021, 77(4): 2129-2141.
doi: 10.1002/ps.v77.4 URL |
[46] | Liu DD, Smagghe G, Liu TX. Interactions between entomopathogenic fungi and insects and prospects with glycans[J]. J Fungi, 2023, 9(5): 575. |
[47] |
宋苗, 汪海, 张杰, 等. 转Bt cry1Ah基因抗虫玉米对亚洲玉米螟、棉铃虫和黏虫的抗性评价[J]. 生物技术通报, 2016, 32(6): 69-75.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.06.011 |
Song M, Wang H, Zhang J, et al. Resistance evaluation of bt cry1Ah-transgenic maize to Asian corn borer, cotton bollworm and oriental armyworm[J]. Biotechnol Bull, 2016, 32(6): 69-75. | |
[48] | Gelaye Y, Negash B. The role of baculoviruses in controlling insect pests: a review[J]. Cogent Food Agric, 2023, 9(1): 2254139. |
[49] |
Cory JS. Evolution of host resistance to insect pathogens[J]. Curr Opin Insect Sci, 2017, 21: 54-59.
doi: S2214-5745(16)30113-4 pmid: 28822489 |
[50] | Xiao ZY, Yao X, Bai SF, et al. Involvement of an enhanced immunity mechanism in the resistance to Bacillus thuringiensis in lepidopteran pests[J]. Insects, 2023, 14(2): 151. |
[51] |
Liu A, Huang XF, Gong LJ, et al. Characterization of immune-related PGRP gene expression and phenoloxidase activity in Cry1Ac-susceptible and-resistant Plutella xylostella(L.)[J]. Pestic Biochem Physiol, 2019, 160: 79-86.
doi: S0048-3575(18)30621-7 pmid: 31519260 |
[52] |
Ramirez JL, Hampton KJ, Rosales AM, et al. Multiple mosquito AMPs are needed to potentiate their antifungal effect against entomopathogenic fungi[J]. Front Microbiol, 2023, 13: 1062383.
doi: 10.3389/fmicb.2022.1062383 URL |
[53] |
Hanson MA, Dostálová A, Ceroni C, et al. Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach[J]. eLife, 2019, 8: e44341.
doi: 10.7554/eLife.44341 URL |
[54] |
Zanchi C, Johnston PR, Rolff J. Evolution of defence cocktails: Antimicrobial peptide combinations reduce mortality and persistent infection[J]. Mol Ecol, 2017, 26(19): 5334-5343.
doi: 10.1111/mec.14267 pmid: 28762573 |
[55] |
Liu L, Wang D. Four antimicrobial peptides of Asian Gypsy moth respond to infection of its viral pathogen, nucleopolyhedrovirus(LdMNPV)[J]. Pestic Biochem Physiol, 2023, 190: 105335.
doi: 10.1016/j.pestbp.2022.105335 URL |
[56] |
Park JM, Brady H, Ruocco MG, et al. Targeting of TAK1 by the NF-kappa B protein Relish regulates the JNK-mediated immune response in Drosophila[J]. Genes Dev, 2004, 18(5): 584-594.
doi: 10.1101/gad.1168104 URL |
[57] | Guo ZJ, Kang S, Wu QJ, et al. The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host[J]. PLoS Pathog, 2021, 17(9): e1009917. |
[58] | Marieshwari BN, Bhuvaragavan S, Sruthi K, et al. Insect phenoloxidase and its diverse roles: melanogenesis and beyond[J]. J Comp Physiol B, 2023, 193(1): 1-23. |
[59] | Duffield KR, Rosales AM, Muturi EJ, et al. Increased phenoloxidase activity constitutes the main defense strategy of Trichoplusia ni larvae against fungal entomopathogenic infections[J]. Insects, 2023, 14(8): 667. |
[60] |
Li ZY, Xiong L, Li JG, et al. Enhanced resistance to Bacillus thuringiensis Cry1Ac toxin mediated by the activation of prophenoloxidase in a cosmopolitan pest[J]. Int J Biol Macromol, 2023, 242(Pt 1): 124678.
doi: 10.1016/j.ijbiomac.2023.124678 URL |
[61] |
Boucias DG, Zhou YH, Huang SS, et al. Microbiota in insect fungal pathology[J]. Appl Microbiol Biotechnol, 2018, 102(14): 5873-5888.
doi: 10.1007/s00253-018-9089-z pmid: 29802479 |
[62] | Li SZ, De Mandal S, Xu XX, et al. The tripartite interaction of host immunity- Bacillus thuringiensis infection-gut microbiota[J]. Toxins, 2020, 12(8): 514. |
[63] |
段入心, 孟雷, 王宁新. 昆虫共生菌介导的抗药性研究进展[J]. 生物技术通报, 2019, 35(9): 29-34.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0488 |
Duan RX, Meng L, Wang NX. Research progresses on insecticide resistance mediated by symbiotic bacteria[J]. Biotechnol Bull, 2019, 35(9): 29-34. | |
[64] |
Chen G, Li QW, Yang XW, et al. Comparison of the co-occurrence patterns of the gut microbial community between Bt-susceptible and Bt-resistant strains of the rice stem borer, Chilo suppressalis[J]. J Pest Sci, 2023, 96(1): 299-315.
doi: 10.1007/s10340-022-01512-5 |
[65] |
Hernández-Martínez P, Naseri B, Navarro-Cerrillo G, et al. Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis[J]. Environ Microbiol, 2010, 12(10): 2730-2737.
doi: 10.1111/j.1462-2920.2010.02241.x pmid: 20482744 |
[66] |
Wang XL, Yang XL, Zhou FY, et al. Symbiotic bacteria on the cuticle protect the oriental fruit moth Grapholita molesta from fungal infection[J]. Biol Contr, 2022, 169: 104895.
doi: 10.1016/j.biocontrol.2022.104895 URL |
[67] |
Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms[J]. Annu Rev Entomol, 2015, 60: 17-34.
doi: 10.1146/annurev-ento-010814-020822 pmid: 25341109 |
[68] |
Flórez LV, Scherlach K, Gaube P, et al. Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism[J]. Nat Commun, 2017, 8: 15172.
doi: 10.1038/ncomms15172 pmid: 28452358 |
[69] | Zhou FY, Xu LT, Wu XQ, et al. Symbiotic bacterium-derived organic acids protect Delia antiqua larvae from entomopathogenic fungal infection[J]. mSystems, 2020, 5(6): e00778-20. |
[70] |
Mattoso TC, Moreira DDO, Samuels RI. Symbiotic bacteria on the cuticle of the leaf-cutting ant Acromyrmex subterraneus subterraneus protect workers from attack by entomopathogenic fungi[J]. Biol Lett, 2012, 8(3): 461-464.
doi: 10.1098/rsbl.2011.0963 URL |
[71] |
Yang ZX, Wu QJ, Wang SL, et al. Expression of cadherin, aminopeptidase N and alkaline phosphatase genes in Cry1Ac-susceptible and Cry1Ac-resistant strains of Plutella xylostella(L.)[J]. J Appl Entomol, 2012, 136(7): 539-548.
doi: 10.1111/jen.2012.136.issue-7 URL |
[72] |
Jurat-Fuentes JL, Heckel DG, Ferré J. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis[J]. Annu Rev Entomol, 2021, 66: 121-140.
doi: 10.1146/annurev-ento-052620-073348 pmid: 33417820 |
[73] |
Xiao YT, Dai Q, Hu RQ, et al. A single point mutation resulting in cadherin mislocalization underpins resistance against Bacillus thuringiensis toxin in cotton bollworm[J]. J Biol Chem, 2017, 292(7): 2933-2943.
doi: 10.1074/jbc.M116.768671 URL |
[74] |
Sun YJ, Yang P, Jin HH, et al. Knockdown of the aminopeptidase N genes decreases susceptibility of Chilo suppressalis larvae to Cry1Ab/Cry1Ac and Cry1Ca[J]. Pestic Biochem Physiol, 2020, 162: 36-42.
doi: 10.1016/j.pestbp.2019.08.003 URL |
[75] | Flagel L, Lee YW, Wanjugi H, et al. Mutational disruption of the ABCC2 gene in fall armyworm, Spodoptera frugiperda, confers resistance to the Cry1Fa and Cry1A.105 insecticidal proteins[J]. Sci Rep, 2018, 8(1): 7255. |
[76] |
Xu LZ, Qin JY, Fu W, et al. MAP4K4 controlled transcription factor POUM1 regulates PxABCG1 expression influencing Cry1Ac resistance in Plutella xylostella(L.)[J]. Pestic Biochem Physiol, 2022, 182: 105053.
doi: 10.1016/j.pestbp.2022.105053 URL |
[77] | Guo L, Cheng ZQ, Qin JY, et al. MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression[J]. PLoS Genet, 2022, 18(2): e1010037. |
[78] |
Zhang J, Pan ZZ, Xu L, et al. Proteolytic activation of Bacillus thuringiensis Vip3Aa protein by Spodoptera exigua midgut protease[J]. Int J Biol Macromol, 2018, 107(Pt A): 1220-1226.
doi: S0141-8130(17)33088-X pmid: 28970168 |
[79] | Gong LJ, Kang S, Zhou JL, et al. Reduced expression of a novel midgut trypsin gene involved in protoxin activation correlates with Cry1Ac resistance in a laboratory-selected strain of Plutella xylostella(L.)[J]. Toxins, 2020, 12(2): 76. |
[80] |
Zhang CH, Wei JZ, Naing ZL, et al. Up-regulated serpin gene involved in Cry1Ac resistance in Helicoverpa armigera[J]. Pestic Biochem Physiol, 2022, 188: 105269.
doi: 10.1016/j.pestbp.2022.105269 URL |
[81] | Abubakar M, Koul B, Chandrashekar K, et al. Whitefly(Bemisia tabaci)management(WFM)strategies for sustainable agriculture: a review[J]. Agriculture, 2022, 12(9): 1317. |
[82] | Ahmad S, Jamil M, Jaworski CC, et al. Double-stranded RNA degrading nuclease affects RNAi efficiency in the melon fly, Zeugodacus cucurbitae[J]. J Pest Sci, 2024(97): 397-409. |
[83] |
Lü J, Nanda S, Chen SM, et al. A survey on the off-target effects of insecticidal double-stranded RNA targeting the Hvβ'COPI gene in the crop pest Henosepilachna vigintioctopunctata through RNA-seq[J]. J Integr Agric, 2022, 21(9): 2665-2674.
doi: 10.1016/j.jia.2022.07.015 URL |
[84] |
Margus A, Piiroinen S, Lehmann P, et al. Sequence variation and regulatory variation in acetylcholinesterase genes contribute to insecticide resistance in different populations of Leptinotarsa decemlineata[J]. Ecol Evol, 2021, 11(22): 15995-16005.
doi: 10.1002/ece3.8269 pmid: 34824806 |
[85] |
Zhen CA, Gao XW. A point mutation(L1015F)of the voltage-sensitive sodium channel gene associated with lambda-cyhalothrin resistance in Apolygus lucorum(Meyer-Dür)population from the transgenic Bt cotton field of China[J]. Pestic Biochem Physiol, 2016, 127: 82-89.
doi: 10.1016/j.pestbp.2015.09.011 URL |
[86] |
Garrood WT, Zimmer CT, Gutbrod O, et al. Influence of the RDL A301S mutation in the brown planthopper Nilaparvata lugens on the activity of phenylpyrazole insecticides[J]. Pestic Biochem Physiol, 2017, 142: 1-8.
doi: 10.1016/j.pestbp.2017.01.007 URL |
[87] | Sun LN, Shen XJ, Cao LJ, et al. Increasing frequency of G275E mutation in the nicotinic acetylcholine receptor α6 subunit conferring spinetoram resistance in invading populations of western flower Thrips in China[J]. Insects, 2022, 13(4): 331. |
[88] |
Chen CY, Han P, Yan WY, et al. Uptake of quercetin reduces larval sensitivity to lambda-cyhalothrin in Helicoverpa armigera[J]. J Pest Sci, 2018, 91(2): 919-926.
doi: 10.1007/s10340-017-0933-1 URL |
[89] | You YC, Xie M, Ren NN, et al. Characterization and expression profiling of glutathione S-transferases in the diamondback moth, Plutella xylostella(L.)[J]. BMC Genomics, 2015, 16(1): 152. |
[90] |
Gao HL, Lin XM, Yang BJ, et al. The roles of GSTs in fipronil resistance in Nilaparvata lugens: over-expression and expression induction[J]. Pestic Biochem Physiol, 2021, 177: 104880.
doi: 10.1016/j.pestbp.2021.104880 URL |
[91] |
Xu ZB, Zou XP, Zhang N, et al. Detoxification of insecticides, allechemicals and heavy metals by glutathione S-transferase SlGSTE1 in the gut of Spodoptera litura[J]. Insect Sci, 2015, 22(4): 503-511.
doi: 10.1111/ins.2015.22.issue-4 URL |
[1] | HU Gong-zheng, CUI Xiao-die, ZHAI Ya-jun, HE Dan-dan. Research Progress in Colistin(COL)Resistance in Bacterial and Its Reversal Mechanism [J]. Biotechnology Bulletin, 2022, 38(9): 28-34. |
[2] | WANG Nan, SU Yu, LIU Wen-jie, FENG Ming, MAO Yu, ZHANG Xin-guo. Research Progress on Active Compounds Against Drug-resistant Microorganism from Plant Endophytes [J]. Biotechnology Bulletin, 2021, 37(8): 263-274. |
[3] | HAN Shao-jie, ZHENG Jing-wu. Research Advances on the Functional Study of Host Resistance Genes to Heterodera glycines [J]. Biotechnology Bulletin, 2021, 37(7): 14-24. |
[4] | DUAN Ru-xin, MENG Lei, WANG Ning-xin. Research Progresses on Insecticide Resistance Mediated by Symbiotic Bacteria [J]. Biotechnology Bulletin, 2019, 35(9): 29-30. |
[5] | LAN Yu-ting, WANG Shuang-Lei, LI Zheng-zhen, FENG Jin-chao, WANG Xiao-dong, SHI Sha. Research Advances in Proteomics of Ammopiptanthus in Responses to Abiotic Stresses [J]. Biotechnology Bulletin, 2019, 35(1): 112-119. |
[6] | LI Rui-xue,SUN Ren-jie,WANG Tai-chu, CHEN Dan-dan,LI Rong-fang,LI Long,ZHAO Wei-guo,. Research Progress on Identification and Evaluation Methods,and Mechanism of Drought Resistance in Plants [J]. Biotechnology Bulletin, 2017, 33(7): 40-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||