Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (9): 28-34.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0384
Previous Articles Next Articles
HU Gong-zheng(), CUI Xiao-die, ZHAI Ya-jun, HE Dan-dan
Received:
2022-03-30
Online:
2022-09-26
Published:
2022-10-11
Contact:
HU Gong-zheng
E-mail:yaolilab@126.com
HU Gong-zheng, CUI Xiao-die, ZHAI Ya-jun, HE Dan-dan. Research Progress in Colistin(COL)Resistance in Bacterial and Its Reversal Mechanism[J]. Biotechnology Bulletin, 2022, 38(9): 28-34.
Fig. 1 General mechanism of Salmonella resistance to COL mediated by lipopolysaccharide(LPS)modification The TCS PhoQP activates the expressions of pmrD,PmrD activates PmrA,and PmrA activates cptA,pmr and arn operons. Both cptA and eptB modified the core region of LPS. The product arn replaces L-Ara4N,and the pEtN produced by mcr- gene and product pmr replaces the phosphate group in lipid A of LPS,the net charge of the OM has changed
Fig. 2 Molecular mechanism of reversing COL resistance in gram negative bacteria The reversal mechanisms related to the action mechanism of COL. a. damage the bacterial OM;b. enhances oxidative damage. The reversal mechanisms related to COL resistance mechanism;c. inhibition of mcr-1 expression;d. inhibition of MCR-1 protein;e. down regulation of TCS pmrAB expression;f. inhibition of multidrug efflux pump;g. inhibit the expression of OmpA protein;h. comprehensive reversal mechanism
[1] |
Song MR, Liu Y, Huang XY, et al. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens[J]. Nat Microbiol, 2020, 5(8):1040-1050.
doi: 10.1038/s41564-020-0723-z pmid: 32424338 |
[2] |
Liu Y, Tong ZW, Shi JR, et al. Reversion of antibiotic resistance in multidrug-resistant pathogens using non-antibiotic pharmaceutical benzydamine[J]. Commun Biol, 2021, 4(1):1328.
doi: 10.1038/s42003-021-02854-z pmid: 34824393 |
[3] |
Jia YQ, Yang BQ, Shi JR, et al. Melatonin prevents conjugative transfer of plasmid-mediated antibiotic resistance genes by disrupting proton motive force[J]. Pharmacol Res, 2022, 175:105978.
doi: 10.1016/j.phrs.2021.105978 URL |
[4] |
Peyclit L, Baron SA, Rolain JM. Drug repurposing to fight colistin and carbapenem-resistant bacteria[J]. Front Cell Infect Microbiol, 2019, 9:193.
doi: 10.3389/fcimb.2019.00193 URL |
[5] |
Ayoub MC. Polymyxins and bacterial membranes:a review of antibacterial activity and mechanisms of resistance[J]. Membranes, 2020, 10(8):181.
doi: 10.3390/membranes10080181 URL |
[6] |
El-Sayed Ahmed M, Zhong LL, Shen C, et al. Colistin and its role in the Era of antibiotic resistance:an extended review(2000-2019)[J]. Emerg Microbes Infect, 2020, 9(1):868-885.
doi: 10.1080/22221751.2020.1754133 URL |
[7] | Yu ZL, Qin WR, Lin JX, et al. Antibacterial mechanisms of polymyxin and bacterial resistance[J]. Biomed Res Int, 2015, 2015:679109. |
[8] |
Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance:acquired and intrinsic resistance in bacteria[J]. Front Microbiol, 2014, 5:643.
doi: 10.3389/fmicb.2014.00643 pmid: 25505462 |
[9] |
Baron S, Hadjadj L, Rolain JM, et al. Molecular mechanisms of polymyxin resistance:knowns and unknowns[J]. Int J Antimicrob Agents, 2016, 48(6):583-591.
doi: 10.1016/j.ijantimicag.2016.06.023 URL |
[10] |
Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China:a microbiological and molecular biological study[J]. Lancet Infect Dis, 2016, 16(2):161-168.
doi: 10.1016/S1473-3099(15)00424-7 URL |
[11] |
Wang CC, Feng Y, Liu LN, et al. Identification of novel mobile colistin resistance gene mcr-10[J]. Emerg Microbes Infect, 2020, 9(1):508-516.
doi: 10.1080/22221751.2020.1732231 URL |
[12] |
Son SJ, Huang RJ, Squire CJ, et al. MCR-1:a promising target for structure-based design of inhibitors to tackle polymyxin resistance[J]. Drug Discov Today, 2019, 24(1):206-216.
doi: 10.1016/j.drudis.2018.07.004 URL |
[13] |
Sun J, Li XP, Fang LX, et al. Co-occurrence of mcr-1 in the chromosome and on an IncHI2 plasmid:persistence of colistin resistance in Escherichia coli[J]. Int J Antimicrob Agents, 2018, 51(6):842-847.
doi: 10.1016/j.ijantimicag.2018.01.007 URL |
[14] |
Walsh TR, Wu YN. China bans colistin as a feed additive for animals[J]. Lancet Infect Dis, 2016, 16(10):1102-1103.
doi: S1473-3099(16)30329-2 pmid: 27676338 |
[15] |
Baron SA, Rolain JM. Efflux pump inhibitor CCCP to rescue colistin susceptibility in mcr-1plasmid-mediated colistin-resistant strains and Gram-negative bacteria[J]. J Antimicrob Chemother, 2018, 73(7):1862-1871.
doi: 10.1093/jac/dky134 URL |
[16] | 翟亚军, 梁军, 魏单单, 等. CpxR对鼠伤寒沙门菌的黏菌素耐药相关基因pmrB和phoQ调控作用的研究[J]. 畜牧兽医学报, 2019, 50(6):1284-1291. |
Zhai YJ, Liang J, Wei DD, et al. Regulative mechanisms of CpxR on the colistin susceptibility of Salmonella enterica serovar typhimurium through the colistin resistance-related genes pmrB and phoQ[J]. Chin J Animal Vet Sci, 2019, 50(6):1284-1291. | |
[17] |
Zhai YJ, Huang H, Liu JH, et al. CpxR overexpression increases the susceptibility of acrB and cpxR double-deleted Salmonella enterica serovar Typhimurium to colistin[J]. J Antimicrob Chemother, 2018, 73(11):3016-3024.
doi: 10.1093/jac/dky320 URL |
[18] |
Zhai YJ, Sun HR, Luo XW, et al. CpxR regulates the colistin susceptibility of Salmonella typhimurium by a multitarget mechanism[J]. J Antimicrob Chemother, 2020, 75(10):2780-2786.
doi: 10.1093/jac/dkaa233 URL |
[19] |
Zhang MK, Zhang MY, Liu SB, et al. Double deletion of cpxR and tolC significantly increases the susceptibility of Salmonella enterica serovar Typhimurium to colistin[J]. J Antimicrob Chemother, 2021, 76(12):3168-3174.
doi: 10.1093/jac/dkab332 URL |
[20] |
Telke AA, Olaitan AO, Morand S, et al. soxRS induces colistin hetero-resistance in Enterobacter asburiae and Enterobacter cloacae by regulating the acrAB-tolC efflux pump[J]. J Antimicrob Chemother, 2017, 72(10):2715-2721.
doi: 10.1093/jac/dkx215 pmid: 29091215 |
[21] |
Stokes JM, MacNair CR, Ilyas B, et al. Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance[J]. Nat Microbiol, 2017, 2:17028.
doi: 10.1038/nmicrobiol.2017.28 pmid: 28263303 |
[22] |
Ayerbe-Algaba R, Gil-Marqués ML, Miró-Canturri A, et al. The anthelmintic oxyclozanide restores the activity of colistin against colistin-resistant gram-negative bacilli[J]. Int J Antimicrob Agents, 2019, 54(4):507-512.
doi: 10.1016/j.ijantimicag.2019.07.006 URL |
[23] | Domalaon R, Okunnu O, Zhanel GG, et al. Synergistic combinations of anthelmintic salicylanilides oxyclozanide, rafoxanide, and closantel with colistin eradicates multidrug-resistant colistin-resistant gram-negative bacilli[J]. J Antibiot(Tokyo), 2019, 72(8):605-616. |
[24] |
Miró-Canturri A, Ayerbe-Algaba R, Villodres ÁR, et al. Repositioning rafoxanide to treat Gram-negative bacilli infections[J]. J Antimicrob Chemother, 2020, 75(7):1895-1905.
doi: 10.1093/jac/dkaa103 pmid: 32240294 |
[25] |
Ayerbe-Algaba R, Gil-Marqués ML, Jiménez-Mejías ME, et al. Synergistic activity of niclosamide in combination with colistin against colistin-susceptible and colistin-resistant Acinetobacter baumannii and Klebsiella pneumoniae[J]. Front Cell Infect Microbiol, 2018, 8:348.
doi: 10.3389/fcimb.2018.00348 URL |
[26] |
MacNair CR, Stokes JM, Carfrae LA, et al. Overcoming mcr-1mediated colistin resistance with colistin in combination with other antibiotics[J]. Nat Commun, 2018, 9(1):458.
doi: 10.1038/s41467-018-02875-z pmid: 29386620 |
[27] |
Liu Y, Jia YQ, Yang KN, et al. Melatonin overcomes MCR-mediated colistin resistance in gram-negative pathogens[J]. Theranostics, 2020, 10(23):10697-10711.
doi: 10.7150/thno.45951 pmid: 32929375 |
[28] | Zhou YL, Liu S, Wang TT, et al. Pterostilbene, a potential MCR-1 inhibitor that enhances the efficacy of polymyxin B[J]. Antimicrob Agents Chemother, 2018, 62(4):e02146-e02117. |
[29] |
Loose M, Naber KG, Hu YM, et al. Serum bactericidal activity of colistin and azidothymidine combinations against mcr-1-positive colistin-resistant Escherichia coli[J]. Int J Antimicrob Agents, 2018, 52(6):783-789.
doi: 10.1016/j.ijantimicag.2018.08.010 URL |
[30] |
Cannatelli A, Principato S, Colavecchio OL, et al. Synergistic activity of colistin in combination with resveratrol against colistin-resistant gram-negative pathogens[J]. Front Microbiol, 2018, 9:1808.
doi: 10.3389/fmicb.2018.01808 pmid: 30131787 |
[31] |
Sundaramoorthy NS, Mohan HM, Subramaniam S, et al. Ursolic acid inhibits colistin efflux and curtails colistin resistant Enterobacteriaceae[J]. AMB Express, 2019, 9(1):27.
doi: 10.1186/s13568-019-0750-4 pmid: 30778773 |
[32] |
Wang YM, Kong LC, Liu J, et al. Synergistic effect of eugenol with Colistin against clinical isolated Colistin-resistant Escherichia coli strains[J]. Antimicrob Resist Infect Control, 2018, 7:17.
doi: 10.1186/s13756-018-0303-7 URL |
[33] |
Zhou YL, Wang JF, Guo Y, et al. Discovery of a potential MCR-1 inhibitor that reverses polymyxin activity against clinical mcr-1-positive Enterobacteriaceae[J]. J Infect, 2019, 78(5):364-372.
doi: S0163-4453(19)30073-8 pmid: 30851289 |
[34] |
Dokla EME, Abutaleb NS, Milik SN, et al. Development of benzimidazole-based derivatives as antimicrobial agents and their synergistic effect with colistin against gram-negative bacteria[J]. Eur J Med Chem, 2020, 186:111850.
doi: 10.1016/j.ejmech.2019.111850 URL |
[35] |
Lan XJ, Yan HT, Lin F, et al. Design, synthesis and biological evaluation of 1-phenyl-2-(phenylamino)ethanone derivatives as novel MCR-1 inhibitors[J]. Molecules, 2019, 24(15):2719.
doi: 10.3390/molecules24152719 URL |
[36] |
Parra-Millán R, Vila-Farrés X, Ayerbe-Algaba R, et al. Synergistic activity of an OmpA inhibitor and colistin against colistin-resistant Acinetobacter baumannii:mechanistic analysis and in vivo efficacy[J]. J Antimicrob Chemother, 2018, 73(12):3405-3412.
doi: 10.1093/jac/dky343 pmid: 30188994 |
[37] |
Harris TL, Worthington RJ, Hittle LE, et al. Small molecule downregulation of PmrAB reverses lipid A modification and breaks colistin resistance[J]. ACS Chem Biol, 2014, 9(1):122-127.
doi: 10.1021/cb400490k pmid: 24131198 |
[38] |
Tsai CN, MacNair CR, Cao MPT, et al. Targeting two-component systems uncovers a small-molecule inhibitor of Salmonella virulence[J]. Cell Chem Biol, 2020, 27(7):793-805. e7.
doi: 10.1016/j.chembiol.2020.04.005 URL |
[39] | Daly SM, Sturge CR, Felder-Scott CF, et al. MCR-1 inhibition with peptide-conjugated phosphorodiamidate morpholino oligomers restores sensitivity to polymyxin in Escherichia coli[J]. mBio, 2017, 8(6):e01315-e01317. |
[40] |
Yi KF, Liu SB, Liu PY, et al. Synergistic antibacterial activity of tetrandrine combined with colistin against MCR-mediated colistin-resistant Salmonella[J]. Biomed Pharmacother, 2022, 149:112873.
doi: 10.1016/j.biopha.2022.112873 URL |
[41] | Copp JN, Pletzer D, Brown AS, et al. Mechanistic understanding enables the rational design of salicylanilide combination therapies for gram-negative infections[J]. mBio, 2020, 11(5):e02068-e02020. |
[1] | LUO Ning, JIAO Yang, MAO Zhen-chuan, LI Hui-xia, XIE Bing-yan. Advances of Trichoderma in Controlling Root Knot Nematodes and Cyst Nematodes [J]. Biotechnology Bulletin, 2023, 39(2): 35-50. |
[2] | WANG Nan, SU Yu, LIU Wen-jie, FENG Ming, MAO Yu, ZHANG Xin-guo. Research Progress on Active Compounds Against Drug-resistant Microorganism from Plant Endophytes [J]. Biotechnology Bulletin, 2021, 37(8): 263-274. |
[3] | HAN Shao-jie, ZHENG Jing-wu. Research Advances on the Functional Study of Host Resistance Genes to Heterodera glycines [J]. Biotechnology Bulletin, 2021, 37(7): 14-24. |
[4] | DUAN Ru-xin, MENG Lei, WANG Ning-xin. Research Progresses on Insecticide Resistance Mediated by Symbiotic Bacteria [J]. Biotechnology Bulletin, 2019, 35(9): 29-30. |
[5] | LAN Yu-ting, WANG Shuang-Lei, LI Zheng-zhen, FENG Jin-chao, WANG Xiao-dong, SHI Sha. Research Advances in Proteomics of Ammopiptanthus in Responses to Abiotic Stresses [J]. Biotechnology Bulletin, 2019, 35(1): 112-119. |
[6] | JIN Yu, LI He-jian, FENG Cheng-qiang. Transcriptome-metabolomics Analysis and Its Application in Studying Drug Action Mechanism [J]. Biotechnology Bulletin, 2018, 34(12): 68-76. |
[7] | LI Rui-xue,SUN Ren-jie,WANG Tai-chu, CHEN Dan-dan,LI Rong-fang,LI Long,ZHAO Wei-guo,. Research Progress on Identification and Evaluation Methods,and Mechanism of Drought Resistance in Plants [J]. Biotechnology Bulletin, 2017, 33(7): 40-48. |
[8] | WANG Wei-wei, LIU Ni, LU Qin, LING Xiao-fei, CHEN Hang. Latest Research Progress on RNA Interference Technology [J]. Biotechnology Bulletin, 2017, 33(11): 35-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||