Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (8): 320-328.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0159
Previous Articles Next Articles
ZHOU Ran(), WANG Xing-ping, LI Yan-xia, LUORENG Zhuo-ma()
Received:
2024-02-18
Online:
2024-08-26
Published:
2024-09-05
Contact:
LUORENG Zhuo-ma
E-mail:zhouran18243320047@163.com;luorenzhuoma@nxu.edu.cn
ZHOU Ran, WANG Xing-ping, LI Yan-xia, LUORENG Zhuo-ma. Analysis of LncRNA Differential Expression in Mammary Tissue of Cows with Staphylococcus aureus Mastitis[J]. Biotechnology Bulletin, 2024, 40(8): 320-328.
长链非编码RNA lncRNA | 引物序列 Primer sequence(5'-3') | 产物长度 Product length/bp |
---|---|---|
TCONS_00018117 | F: TGCCAGGACAAGGAGAAA R: TCAGCACCTAAACCACAAGA | 100 |
TCONS_00096253 | F: GGAGCGTAAGTAGGAAGCG R: AATGGTCCTGAATAGGGGTT | 92 |
TCONS_00013236 | F: ATGGAAAAACGGACTCGG R: CGGTCTGCCTGAGTCTTG | 88 |
TCONS_00026262 | F: AATGCCAGGGCTCCAGTT R: CTCAGATGGACAGTATTCCCTTT | 89 |
TCONS_00018115 | F: GCCAGGACAAGGAGAAACA R: TCAGCACCTAAACCACAAGAC | 100 |
TCONS_00113348 | F: GGTTCTATTGGATACTGGACAT R: CCTTGCTCTGCTCTTCTTTA | 100 |
TCONS_00120135 | F: GCCTTTCATTTTCAAGAGCAT R: TGTCAAGGGAAGGGTGTCTG | 90 |
TCONS_00044738 | F: AGGGCTGTTTACCTGCTTA R: GGTGATTTCGGTTCCTCTA | 93 |
TCONS_00032949 | F: CAAGACGGCGACTTAGAAA R: ATGCCATCAAGTGGAACAA | 94 |
TCONS_00124429 | F: GTCCACCTCCACCCTACA R: ATGCTCACCGAAGTCAAAG | 100 |
TCONS_00117470 | F: TGTGCTGGACATAAATCGTG R: AGGTTCTGGGATTGTCTGC | 93 |
TCONS_00088875 | F: GATGGTGCTGCTTCAGGATG R: TGGAGGCTACGCCAGGTT | 94 |
GAPDH a | F: GGCATCGTGGAGGGACTTATG R: CCAGTGAGCTTCCCGTTGAG | 185 |
RPS18 b | F: GTGGTGTTGAGGAAAGCAGACA R: TGATCACACGTTCCACCTCATC | 79 |
Table 1 RT-qPCR primers for lncRNA expression detection
长链非编码RNA lncRNA | 引物序列 Primer sequence(5'-3') | 产物长度 Product length/bp |
---|---|---|
TCONS_00018117 | F: TGCCAGGACAAGGAGAAA R: TCAGCACCTAAACCACAAGA | 100 |
TCONS_00096253 | F: GGAGCGTAAGTAGGAAGCG R: AATGGTCCTGAATAGGGGTT | 92 |
TCONS_00013236 | F: ATGGAAAAACGGACTCGG R: CGGTCTGCCTGAGTCTTG | 88 |
TCONS_00026262 | F: AATGCCAGGGCTCCAGTT R: CTCAGATGGACAGTATTCCCTTT | 89 |
TCONS_00018115 | F: GCCAGGACAAGGAGAAACA R: TCAGCACCTAAACCACAAGAC | 100 |
TCONS_00113348 | F: GGTTCTATTGGATACTGGACAT R: CCTTGCTCTGCTCTTCTTTA | 100 |
TCONS_00120135 | F: GCCTTTCATTTTCAAGAGCAT R: TGTCAAGGGAAGGGTGTCTG | 90 |
TCONS_00044738 | F: AGGGCTGTTTACCTGCTTA R: GGTGATTTCGGTTCCTCTA | 93 |
TCONS_00032949 | F: CAAGACGGCGACTTAGAAA R: ATGCCATCAAGTGGAACAA | 94 |
TCONS_00124429 | F: GTCCACCTCCACCCTACA R: ATGCTCACCGAAGTCAAAG | 100 |
TCONS_00117470 | F: TGTGCTGGACATAAATCGTG R: AGGTTCTGGGATTGTCTGC | 93 |
TCONS_00088875 | F: GATGGTGCTGCTTCAGGATG R: TGGAGGCTACGCCAGGTT | 94 |
GAPDH a | F: GGCATCGTGGAGGGACTTATG R: CCAGTGAGCTTCCCGTTGAG | 185 |
RPS18 b | F: GTGGTGTTGAGGAAAGCAGACA R: TGATCACACGTTCCACCTCATC | 79 |
样品 Sample | 质控后的读段数 Clean reads | 对比到参考基因组的读段数 Mapped reads | 参考基因组上有唯一比对位置的读段数 Uniq mapped reads | 参考基因组上有多个比对位置的读段数 Multiple mapped reads | GC /% | Q30 /% |
---|---|---|---|---|---|---|
M.C | 128 303 002 | 108 631 698 (84.67%) | 97 000 181 (89.29%) | 11 631 517 (10.71%) | 52.30 | 85.60 |
M.S | 108 776 484 | 91 300 177 (83.93%) | 84 635 626 (92.70%) | 6 664 551 (7.30%) | 50.84 | 85.16 |
Table 2 Quality statistics of sequencing libraries
样品 Sample | 质控后的读段数 Clean reads | 对比到参考基因组的读段数 Mapped reads | 参考基因组上有唯一比对位置的读段数 Uniq mapped reads | 参考基因组上有多个比对位置的读段数 Multiple mapped reads | GC /% | Q30 /% |
---|---|---|---|---|---|---|
M.C | 128 303 002 | 108 631 698 (84.67%) | 97 000 181 (89.29%) | 11 631 517 (10.71%) | 52.30 | 85.60 |
M.S | 108 776 484 | 91 300 177 (83.93%) | 84 635 626 (92.70%) | 6 664 551 (7.30%) | 50.84 | 85.16 |
Fig. 1 Distribution of mapped reads in the genome A: Distribution of mapped reads in the control group; B: distribution of mapped reads in the S. aureus-induced group
Fig. 5 GO annotation and KEGG enrichment analysis of DElncRNA target genes A: GO annotation analysis of DElncRNA target genes; B: KEGG enrichment analysis of DElncRNA target genes
[1] |
Doehring C, Sundrum A. The informative value of an overview on antibiotic consumption, treatment efficacy and cost of clinical mastitis at farm level[J]. Prev Vet Med, 2019, 165: 63-70.
doi: S0167-5877(17)30827-9 pmid: 30851929 |
[2] |
Royster E, Wagner S. Treatment of mastitis in cattle[J]. Vet Clin North Am Food Anim Pract, 2015, 31(1): 17-46.
doi: 10.1016/j.cvfa.2014.11.010 |
[3] |
Ruegg PL. A 100-Year Review: Mastitis detection, management, and prevention[J]. J Dairy Sci, 2017, 100(12): 10381-10397.
doi: S0022-0302(17)31032-9 pmid: 29153171 |
[4] | Gorji AE, Roudbari Z, Sadeghi B, et al. Transcriptomic analysis on the promoter regions discover gene networks involving mastitis in cattle[J]. Microb Pathog, 2019, 137: 103801. |
[5] | Chen Y, Yang J, Huang Z, et al. Vitexin mitigates Staphylococcus aureus-induced mastitis via regulation of ROS/ER stress/NF- κ B/MAPK pathway[J]. Oxid Med Cell Longev, 2022, 2022: 7977433. |
[6] |
Wu YH, He T, Fu YH, et al. Corynoline protects lipopolysaccharide-induced mastitis through regulating AKT/GSK3β/Nrf2 signaling pathway[J]. Environ Toxicol, 2021, 36(12): 2493-2499.
doi: 10.1002/tox.23362 pmid: 34477289 |
[7] | Ran X, Yan Z, Yang YX, et al. Dioscin improves pyroptosis in LPS-induced mice mastitis by activating AMPK/Nrf2 and inhibiting the NF- κB signaling pathway[J]. Oxid Med Cell Longev, 2020, 2020: 8845521. |
[8] | Mishra SK, Zhong ZM, Wang H. Hundreds of LncRNAs display circadian rhythmicity in zebrafish larvae[J]. Cells, 2021, 10(11): 3173. |
[9] |
Tang H, Yuan S, Chen T, et al. Development of an immune-related lncRNA-miRNA-mRNA network based on competing endogenous RNA in periodontitis[J]. J Clin Periodontol, 2021, 48(11): 1470-1479.
doi: 10.1111/jcpe.13537 pmid: 34409632 |
[10] | Cao HL, Liu ZJ, Huang PL, et al. lncRNA-RMRP promotes proliferation, migration and invasion of bladder cancer via miR-206[J]. Eur Rev Med Pharmacol Sci, 2019, 23(3): 1012-1021. |
[11] |
Tian F, Wang JH, Zhang ZH, et al. LncRNA SNHG7/miR-34a-5p/SYVN1 axis plays a vital role in proliferation, apoptosis and autophagy in osteoarthritis[J]. Biol Res, 2020, 53(1): 9.
doi: 10.1186/s40659-020-00275-6 pmid: 32066502 |
[12] | Lin CJ, Zhu YF, Hao ZY, et al. Genome-wide analysis of LncRNA in bovine mammary epithelial cell injuries induced by Escherichia coli and Staphylococcus aureus[J]. Int J Mol Sci, 2021, 22(18): 9719. |
[13] | Chen Y, Jing HY, Chen MY, et al. Transcriptional profiling of exosomes derived from Staphylococcus aureus-infected bovine mammary epithelial cell line MAC-T by RNA-seq analysis[J]. Oxid Med Cell Longev, 2021, 2021: 8460355. |
[14] |
Tong C, Chen QL, Zhao LL, et al. Identification and characterization of long intergenic noncoding RNAs in bovine mammary glands[J]. BMC Genomics, 2017, 18(1): 468.
doi: 10.1186/s12864-017-3858-4 pmid: 28629368 |
[15] |
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2[J]. Nat Methods, 2012, 9(4): 357-359.
doi: 10.1038/nmeth.1923 pmid: 22388286 |
[16] | Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions[J]. Genome Biol, 2013, 14(4): R36. |
[17] |
Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nat Protoc, 2012, 7(3): 562-578.
doi: 10.1038/nprot.2012.016 pmid: 22383036 |
[18] |
Bougarn S, Cunha P, Gilbert FB, et al. Technical note: validation of candidate reference genes for normalization of quantitative PCR in bovine mammary epithelial cells responding to inflammatory stimuli[J]. J Dairy Sci, 2011, 94(5): 2425-2430.
doi: 10.3168/jds.2010-3859 pmid: 21524534 |
[19] |
Tripurani SK, Xiao CD, Salem M, et al. Cloning and analysis of fetal ovary microRNAs in cattle[J]. Anim Reprod Sci, 2010, 120(1-4): 16-22.
doi: 10.1016/j.anireprosci.2010.03.001 pmid: 20347535 |
[20] |
Gil N, Ulitsky I. Regulation of gene expression by cis-acting long non-coding RNAs[J]. Nat Rev Genet, 2020, 21(2): 102-117.
doi: 10.1038/s41576-019-0184-5 pmid: 31729473 |
[21] |
Li JW, Ma W, Zeng P, et al. LncTar: a tool for predicting the RNA targets of long noncoding RNAs[J]. Brief Bioinform, 2015, 16(5): 806-812.
doi: 10.1093/bib/bbu048 pmid: 25524864 |
[22] | Mao XZ, Cai T, Olyarchuk JG, et al. Automated genome annotation and pathway identification using the KEGG Orthology(KO)as a controlled vocabulary[J]. Bioinformatics, 2005, 21(19): 3787-3793. |
[23] | Sun YJ, Zhao TQ, Ma YY, et al. Multiple roles of LncRNA-BMNCR on cell proliferation and apoptosis by targeting miR-145/CBFB axis in BMECs[J]. Vet Q, 2023, 43(1): 1-11. |
[24] |
Zhou M, Barkema HW, Gao J, et al. MicroRNA miR-223 modulates NLRP3 and Keap1, mitigating lipopolysaccharide-induced inflammation and oxidative stress in bovine mammary epithelial cells and murine mammary glands[J]. Vet Res, 2023, 54(1): 78.
doi: 10.1186/s13567-023-01206-5 pmid: 37710276 |
[25] | Chen Z, Liang Y, Lu QY, et al. Cadmium promotes apoptosis and inflammation via the circ08409/miR-133a/TGFB2 axis in bovine mammary epithelial cells and mouse mammary gland[J]. Ecotoxicol Environ Saf, 2021, 222: 112477. |
[26] | Chen Y, Yang J, Huang Z, et al. Exosomal lnc-AFTR as a novel translation regulator of FAS ameliorates Staphylococcus aureus-induced mastitis[J]. BioFactors, 2022, 48(1): 148-163. |
[27] | Feng F, Li YX, Wang JP, et al. LncRNA CA12-AS1 targets miR-133a to promote LPS-induced inflammatory response in bovine mammary epithelial cells[J]. Int J Biol Macromol, 2024, 261(Pt 1): 129710. |
[28] | Bai ZX, Wu YZ, Cai WD, et al. High-throughput analysis of lncRNA in cows with naturally infected Staphylococcus aureus mammary gland[J]. Anim Biotechnol, 2023, 34(7): 2166-2174. |
[29] | Wang JP, Hu QC, Yang J, et al. Differential expression profiles of lncRNA following LPS-induced inflammation in bovine mammary epithelial cells[J]. Front Vet Sci, 2021, 8: 758488. |
[30] | Jing HY, Chen Y, Qiu CW, et al. LncRNAs transcriptome analysis revealed potential mechanisms of selenium to mastitis in dairy cows[J]. Biol Trace Elem Res, 2022, 200(10): 4316-4324. |
[31] | Zhang YH, Xu YQ, Chen BW, et al. Selenium deficiency promotes oxidative stress-induced mastitis via activating the NF-κB and MAPK pathways in dairy cow[J]. Biol Trace Elem Res, 2022, 200(6): 2716-2726. |
[32] |
Li JD, Yin P, Gong P, et al. 8-Methoxypsoralen protects bovine mammary epithelial cells against lipopolysaccharide-induced inflammatory injury via suppressing JAK/STAT and NF-κB pathway[J]. Microbiol Immunol, 2019, 63(10): 427-437.
doi: 10.1111/1348-0421.12730 pmid: 31313848 |
[33] |
Saxena M, Yeretssian G. NOD-like receptors: master regulators of inflammation and cancer[J]. Front Immunol, 2014, 5: 327.
doi: 10.3389/fimmu.2014.00327 pmid: 25071785 |
[34] | Kiewiet MBG, Dekkers R, Gros M, et al. Toll-like receptor mediated activation is possibly involved in immunoregulating properties of cow's milk hydrolysates[J]. PLoS One, 2017, 12(6): e0178191. |
[35] | Xu P, Xu XB, Fotina H, et al. Anti-inflammatory effects of chlorogenic acid from Taraxacum officinale on LTA-stimulated bovine mammary epithelial cells via the TLR2/NF-κB pathway[J]. PLoS One, 2023, 18(3): e0282343. |
[36] | Cao FQ, Zhou W, Liu GH, et al. Staphylococcus aureus peptidoglycan promotes osteoclastogenesis via TLR2-mediated activation of the NF-κB/NFATc1 signaling pathway[J]. Am J Transl Res, 2017, 9(11): 5022-5030. |
[37] | Li HW, Li Q, Guo T, et al. LncRNA CRNDE triggers inflammation through the TLR3-NF-κB-Cytokine signaling pathway[J]. Tumour Biol, 2017, 39(6): 1010428317703821. |
[38] | Zhou CK, Gao J, Ji HY, et al. Benzoylaconine modulates LPS-induced responses through inhibition of toll-like receptor-mediated NF-κB and MAPK signaling in RAW264.7 cells[J]. Inflammation, 2021, 44(5): 2018-2032. |
[39] | Zhou HY, Simion V, Pierce JB, et al. LncRNA-MAP3K4 regulates vascular inflammation through the p38 MAPK signaling pathway and cis-modulation of MAP3K4[J]. FASEB J, 2021, 35(1): e21133. |
[40] |
Barrio L, Roman-Garcia S, Diaz-Mora E, et al. B cell development and T-dependent antibody response are regulated by p38γ and p38δ[J]. Front Cell Dev Biol, 2020, 8: 189.
doi: 10.3389/fcell.2020.00189 pmid: 32266269 |
[41] | Sharma A, Tirpude NV, Kumari M, et al. Rutin prevents inflammation-associated colon damage via inhibiting the p38/MAPKAPK2 and PI3K/Akt/GSK3β/NF-κB signalling axes and enhancing splenic Tregs in DSS-induced murine chronic colitis[J]. Food Funct, 2021, 12(18): 8492-8506. |
[42] | Ohto U. Activation and regulation mechanisms of NOD-like receptors based on structural biology[J]. Front Immunol, 2022, 13: 953530. |
[43] |
Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling[J]. Nat Rev Immunol, 2016, 16(7): 407-420.
doi: 10.1038/nri.2016.58 pmid: 27291964 |
[44] | Wang XZ, Liu MC, Geng N, et al. Staphylococcus aureus mediates pyroptosis in bovine mammary epithelial cell via activation of NLRP3 inflammasome[J]. Vet Res, 2022, 53(1): 10. |
[45] | Ma MR, Pei YF, Wang XX, et al. LncRNA XIST mediates bovine mammary epithelial cell inflammatory response via NF-κB/NLRP3 inflammasome pathway[J]. Cell Prolif, 2019, 52(1): e12525. |
[46] | Wang DH, Höing S, Patterson HC, et al. Inflammation in mice ectopically expressing human Pyogenic Arthritis, Pyoderma Gangrenosum, and Acne(PAPA)Syndrome-associated PSTPIP1 A230T mutant proteins[J]. J Biol Chem, 2013, 288(7): 4594-4601. |
[47] |
Huang W, Li YY, Zhang C, et al. IGF2BP3 facilitates cell proliferation and tumorigenesis via modulation of JAK/STAT signalling pathway in human bladder cancer[J]. J Cell Mol Med, 2020, 24(23): 13949-13960.
doi: 10.1111/jcmm.16003 pmid: 33094561 |
[48] |
Kumar N, Sharma N, Mehan S. Connection between JAK/STAT and PPARγ signaling during the progression of multiple sclerosis: insights into the modulation of T-cells and immune responses in the brain[J]. Curr Mol Pharmacol, 2021, 14(5): 823-837.
doi: 10.2174/1874467214666210301121432 pmid: 33645493 |
[49] | Zhuo Q, Wei L, Yin XT, et al. LncRNA ZNF667-AS1 alleviates rheumatoid arthritis by sponging miR-523-3p and inactivating the JAK/STAT signalling pathway[J]. Autoimmunity, 2021, 54(7): 406-414. |
[50] |
Szydłowski M, Dębek S, Prochorec-Sobieszek M, et al. PIM kinases promote survival and immune escape in primary mediastinal large B-cell lymphoma through modulation of JAK-STAT and NF-κB activity[J]. Am J Pathol, 2021, 191(3): 567-574.
doi: 10.1016/j.ajpath.2020.12.001 pmid: 33307035 |
[51] |
Xu ZH, Gwin KA, Li YL, et al. Developmental stage-specific effects of Pim-1 dysregulation on murine bone marrow B cell development[J]. BMC Immunol, 2016, 17(1): 16.
doi: 10.1186/s12865-016-0152-1 pmid: 27287229 |
[52] | de Vries M, Heijink IH, Gras R, et al. Pim1 kinase protects airway epithelial cells from cigarette smoke-induced damage and airway inflammation[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307(3): L240-L251. |
[1] | JIN Bo-yang, QIN Shi-yu, ZHANG Ming-da, LI Qian-qian, WEN Jing, SHEN Xiu-li, DU Zhi-qiang. Research on the Molecular Mechanism of Crayfish prx 6 in the Process of Defending against Staphylococcus aureus Infection [J]. Biotechnology Bulletin, 2024, 40(7): 314-322. |
[2] | ZHANG Qing-lan, ZHANG Ya-ran, JU Zhi-hua, WANG Xiu-ge, XIAO Yao, WANG Jin-peng, WEI Xiao-chao, GAO Ya-ping, BAI Fu-heng, WANG Hong-cheng. Identification and Transcriptional Regulation Analysis of Core Promoter in Bovine TARDBP Gene [J]. Biotechnology Bulletin, 2024, 40(4): 306-318. |
[3] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[4] | CHEN Xiao-meng, ZHANG Xue-jing, ZHANG Huan, ZHANG Bao-jiang, SU Yan. Prokaryotic Expression of Recombinant Bovine Mastitis Staphylococcus aureus GapC Protein and Identification of Its B-cell Epitopes [J]. Biotechnology Bulletin, 2023, 39(5): 306-313. |
[5] | LI Yan-xia, WANG Jin-peng, FENG Fen, BAO Bin-wu, DONG Yi-wen, WANG Xing-ping, LUORENG Zhuo-ma. Effects of Escherichia coli Dairy Cow Mastitis on the Expressions of Milk-producing Trait Related Genes [J]. Biotechnology Bulletin, 2023, 39(2): 274-282. |
[6] | LI Jian-jian, HE Chen-jing, HUANG Xiao-ping, XIANG Tai-he. Research Progress in the Regulation of Development and Stress Response by Long Non-coding RNAs in Plants [J]. Biotechnology Bulletin, 2023, 39(1): 48-58. |
[7] | CHENG Shen-wei, ZHANG Ke-qiang, LIANG Jun-feng, LIU Fu-yuan, GAO Xing-liang, DU Lian-zhu. Establishment of a Triple Droplet Digital PCR Quantitative Detection Method for Typical Pathogenic Bacteria in Livestock and Poultry Manure [J]. Biotechnology Bulletin, 2022, 38(9): 271-280. |
[8] | LI Yu-hang, WANG Xing-ping, YANG Jian, LUORENG Zhuo-ma, REN Qian-qian, WEI Da-wei, MA Yun. Expression and Functional Analysis of miR-665 in Bovine Mammary Epithelial Cell Inflammation [J]. Biotechnology Bulletin, 2022, 38(5): 159-168. |
[9] | WANG Jin-peng, LUORENG Zhuo-ma, WANG Xing-ping, YANG Jian, JIA Li, MA Yun, WEI Da-wei. Research Progress in Treatment and Anti-inflammatory Molecular Mechanism of Cow Mastitis [J]. Biotechnology Bulletin, 2021, 37(12): 212-219. |
[10] | ZHANG Meng, LUO Fang, WANG Min, WU Yan-ze, WANG Jun-kui, HE Dong-qian, CHEN Li-yao, TAO Jin-zhong. Changes in Plasma Metabolites After Calving in Dairy Cows [J]. Biotechnology Bulletin, 2020, 36(6): 191-199. |
[11] | WU Jia-jin, ZHU Sen-lin, ZHOU Mi, SUN Hui-zeng. Research Progress and Trends on Rumen Microbiota in Dairy Cows [J]. Biotechnology Bulletin, 2020, 36(2): 27-38. |
[12] | HU Qi-chao, LUORENG Zhuo-ma, WEI Da-wei, YANG Jian, JIA Li, WANG Xing-ping, MA Yun. Research Progress on Innate Immunity-Related Coding Genes in the Regulation of Cow Mastitis [J]. Biotechnology Bulletin, 2020, 36(12): 239-246. |
[13] | ZHANG Meng, LIU Guo-lin, LI Xiang-long, CHEN Yong-hong, BAI Ling-rong, LUO Fang, LI Ya-chao, TAO Jin-zhong. Effect of Adding Hawthorn and Astragalus Mixtures on the Plasma Metabolome of Perinatal Dairy Cows [J]. Biotechnology Bulletin, 2019, 35(8): 127-137. |
[14] | CHANG Yong-fang, BAO Peng-jia, CHU Min, WU Xiao-yun, LIANG Chun-nian, YAN Ping. Research Progress on the Regulation of LncRNA in the Development of Mammalian Hair Follicle [J]. Biotechnology Bulletin, 2019, 35(8): 205-212. |
[15] | MING Peng-fei, HUANG Ying-ying, DONG Yan-li, NIE Xing-can, FENG Shi-bin, WANG Xi-chun, CHENG Jian-bo, LI Jin-chun, WU Jin-jie, LI Yu. Regulation of LKB1-AMPKα-SIRT1 Signal Pathway in Lipid Metabolism in the Adipose Tissue of Dairy Cows [J]. Biotechnology Bulletin, 2019, 35(2): 176-181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||