Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (7): 314-322.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1205
Previous Articles Next Articles
JIN Bo-yang1(), QIN Shi-yu1, ZHANG Ming-da1, LI Qian-qian1, WEN Jing1, SHEN Xiu-li2, DU Zhi-qiang1()
Received:
2023-12-24
Online:
2024-07-26
Published:
2024-07-30
Contact:
DU Zhi-qiang
E-mail:m19556819988@163.com;nmdzq1981@163.com
JIN Bo-yang, QIN Shi-yu, ZHANG Ming-da, LI Qian-qian, WEN Jing, SHEN Xiu-li, DU Zhi-qiang. Research on the Molecular Mechanism of Crayfish prx 6 in the Process of Defending against Staphylococcus aureus Infection[J]. Biotechnology Bulletin, 2024, 40(7): 314-322.
引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|
prx 6-RT-F | CGGATCACTGGAGGGTCA AACA |
prx 6-RT-R | GCA ATTTTCATCCTCGGCATCA |
prx 6-iF | GCGTAATACGACTCACTATAGGATGGTTAACTTAGGCGAT |
prx 6-iR | GCGTAATACGACTCACTATAGGGTCTATGGCTCTAAGAAT |
GFP-iF | GCGTAATACGACTCACTATAGGCGAGCTGGACGGCGACGTAAAC |
GFP-iR | GCGTAATACGACTCACTATAGGCTTGAAGTTCACCTTGATGCC |
18S RNA-RT-F | TCTTCTTAGAGGGATTAGCGG |
18S RNA-RT-R | AAGGGGATTGAACGGGTTA |
Pc-ALF 9-RT-F | AGTGGCGTCATACAGGAAGGGG |
Pc-ALF 9-RT-R | CCAAAGGATGGCGAGAAATAGT |
Pc-crustin 3-RT-F | TACGTCTTGCCCTCGTCTTA |
Pc-crustin 3-RT-R | CAGCGTCCTCCTCTTTGTAATC |
Pc-crustin 4-RT-F | CTCTGACTGCCAGGTCTTT |
Pc-crustin 4-RT-R | TGCGAGCTGTGATGGTTAG |
Pc-lectin 1-RT-F | GGGGAGGGCTGCTACTACTTG |
Pc-lectin 1-RT-R | CGTGCCACCCACCCATAAG |
Table 1 RT-qPCR primer sequences
引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|
prx 6-RT-F | CGGATCACTGGAGGGTCA AACA |
prx 6-RT-R | GCA ATTTTCATCCTCGGCATCA |
prx 6-iF | GCGTAATACGACTCACTATAGGATGGTTAACTTAGGCGAT |
prx 6-iR | GCGTAATACGACTCACTATAGGGTCTATGGCTCTAAGAAT |
GFP-iF | GCGTAATACGACTCACTATAGGCGAGCTGGACGGCGACGTAAAC |
GFP-iR | GCGTAATACGACTCACTATAGGCTTGAAGTTCACCTTGATGCC |
18S RNA-RT-F | TCTTCTTAGAGGGATTAGCGG |
18S RNA-RT-R | AAGGGGATTGAACGGGTTA |
Pc-ALF 9-RT-F | AGTGGCGTCATACAGGAAGGGG |
Pc-ALF 9-RT-R | CCAAAGGATGGCGAGAAATAGT |
Pc-crustin 3-RT-F | TACGTCTTGCCCTCGTCTTA |
Pc-crustin 3-RT-R | CAGCGTCCTCCTCTTTGTAATC |
Pc-crustin 4-RT-F | CTCTGACTGCCAGGTCTTT |
Pc-crustin 4-RT-R | TGCGAGCTGTGATGGTTAG |
Pc-lectin 1-RT-F | GGGGAGGGCTGCTACTACTTG |
Pc-lectin 1-RT-R | CGTGCCACCCACCCATAAG |
Fig. 2 Expression patterns of prx 6 after S. aureus stimulation Relative expression of prx 6 in tissues after S. aureus infection. Different lowercase letters showed significant differences(P<0.05). The same letters indicate insignificant differences(P>0.05). The same below
Fig. 3 Survival rates of P. clarkii statistics after S. aureus injection in RNAi assay **** indicates highly significant different with control group(P<0.000 1)
Fig. 4 Results for relative expression analysis of Amps genes in crayfish hepatopancreas after S. aureus challenge in RNAi assay 18S RNA is used as inner control
Fig. 5 Bacterial clearance experiments results in crayfish hemolymph in RNAi assay The hemolymph of crayfish from 1×PBS, dsPrx 6 + S. aureus and dsGFP + S. aureus groups was coated on the agar plate. Bacterial abundance at 12 and 24 h was detected
Fig. 7 Theoretical speculation for prx 6 affecting the expression of Amps genes to defend against S. aureus infection After S. aureus infection, crayfish can further modulate the transcription and expression of genes related to antimicrobial peptides by activating prx 6, thereby facilitating the secretion of antimicrobial peptides against foreign pathogens
[1] | 夏越勇, 周国勤, 刘炜. 小龙虾常见病害及防治措施[J]. 水产养殖, 2023, 44(4): 69-72. |
Xia YY, Zhou GQ, Liu W. Common diseases of crayfish and their control measures[J]. J Aquac, 2023, 44(4): 69-72. | |
[2] | Qin ZD, Sarath Babu V, Lin HZ, et al. The immune function of prophenoloxidase from red swamp crayfish(Procambarus clarkii)in response to bacterial infection[J]. Fish Shellfish Immunol, 2019, 92: 83-90. |
[3] | Park S, Ronholm J. Staphylococcus aureus in agriculture: lessons in evolution from a multispecies pathogen[J]. Clin Microbiol Rev, 2021, 34(2): e00182-e00120. |
[4] | Forshaw TE, Reisz JA, Nelson KJ, et al. Specificity of human sulfiredoxin for reductant and peroxiredoxin oligomeric state[J]. Antioxidants, 2021, 10(6): 946. |
[5] |
Wood ZA, Schröder E, Robin Harris J, et al. Structure, mechanism and regulation of peroxiredoxins[J]. Trends Biochem Sci, 2003, 28(1): 32-40.
doi: 10.1016/s0968-0004(02)00003-8 pmid: 12517450 |
[6] |
Troussicot L, Burmann BM, Molin M. Structural determinants of multimerization and dissociation in 2-Cys peroxiredoxin chaperone function[J]. Structure, 2021, 29(7): 640-654.
doi: 10.1016/j.str.2021.04.007 pmid: 33945778 |
[7] | Qiao K, Wang CC, Huang LQ, et al. Molecular characterization of a new tetrodotoxin-binding protein, peroxiredoxin-1, from Takifugu bimaculatus[J]. Int J Mol Sci, 2022, 23(6): 3071. |
[8] | Liang XY, Li YM, Chu PF, et al. Grass carp prx 3 elevates host antioxidant activity and induces autophagy to inhibit grass carp reovirus(GCRV)replication[J]. Antioxidants, 2022, 11(10): 1952. |
[9] | 李辉, 冯伟, 于俊杰, 等. 甲壳动物过氧化物还原酶基因的研究进展[J]. 浙江大学学报: 农业与生命科学版, 2021, 47(3): 284-294. |
Li H, Feng W, Yu JJ, et al. Research progress of peroxiredoxin gene in crustaceans[J]. J Zhejiang Univ Agric Life Sci, 2021, 47(3): 284-294. | |
[10] | Lang L, Wolf AC, Riedel M, et al. Substrate promiscuity and hyperoxidation susceptibility as potential driving forces for the co-evolution of Prx5-type and Prx6-type 1-cys peroxiredoxin mechanisms[J]. ACS Catal, 2023, 13(6): 3627-3643. |
[11] | Zhang RR, Wang Y, Xu C, et al. Characterization of peroxiredoxin from Neocaridina denticulata sinensis and its antioxidant and DNA protection activity analysis[J]. Fish Shellfish Immunol, 2022, 127: 211-218. |
[12] | Ren XC, Liu XP, Liu QH. Litopenaeus vannamei peroxiredoxin 2-like is involved in WSSV infection by interaction with wsv089 and VP26[J]. Dev Comp Immunol, 2022, 126: 104243. |
[13] | Wanvimonsuk S, Somboonwiwat K. Peroxiredoxin-4 supplementation modulates the immune response, shapes the intestinal microbiome, and enhances AHPND resistance in Penaeus vannamei[J]. Fish Shellfish Immunol, 2023, 139: 108915. |
[14] |
Yang YZ, Zhao Y, Yang L, et al. Characterization of 2-Cys peroxiredoxin 3 and 4 in common carp and the immune response against bacterial infection[J]. Comp Biochem Physiol B Biochem Mol Biol, 2018, 217: 60-69.
doi: S1096-4959(17)30201-4 pmid: 29277606 |
[15] | Liu K, Liu JX, Zhang ZN, et al. Molecular characterization of three peroxiredoxin genes in Portunus pelagicus expressed in response to Vibrio alginolyticus challenge[J]. Aquac Rep, 2022, 27: 101391. |
[16] | Xia XC, Yu RX, Li MB, et al. Molecular cloning and characterization of two genes encoding peroxiredoxins from freshwater bivalve Anodonta woodiana: Antioxidative effect and immune defense[J]. Fish Shellfish Immunol, 2018, 82: 476-491. |
[17] | Abbas MN, Kausar S, Cui HJ. The biological role of peroxiredoxins in innate immune responses of aquatic invertebrates[J]. Fish Shellfish Immunol, 2019, 89: 91-97. |
[18] | Shen HS, Hu YC, Ma YC, et al. In-depth transcriptome analysis of the red swamp crayfish Procambarus clarkii[J]. PLoS One, 2014, 9(10): e110548. |
[19] | Mu CK, Zhao JM, Wang LL, et al. Molecular cloning and characterization of peroxiredoxin 6 from Chinese mitten crab Eriocheir sinensis[J]. Fish Shellfish Immunol, 2009, 26(6): 821-827. |
[20] |
Rőszer T. The invertebrate midintestinal gland(“hepatopancreas”)is an evolutionary forerunner in the integration of immunity and metabolism[J]. Cell Tissue Res, 2014, 358(3): 685-695.
doi: 10.1007/s00441-014-1985-7 pmid: 25174684 |
[21] | Dai LS, Abbas MN, Kausar S, et al. Transcriptome analysis of hepatopancraes of Procambarus clarkii challenged with polyriboinosinic polyribocytidylic acid(poly I: C)[J]. Fish Shellfish Immunol, 2017, 71: 144-150. |
[22] | Cheng DW, Zhang HK, Liu HX, et al. Identification and molecular characterization of peroxiredoxin 6 from noble scallop Chlamys nobilis revealing its potent immune response and antioxidant property[J]. Fish Shellfish Immunol, 2020, 100: 368-377. |
[23] | 谢亚凯. 两种过氧化物还原酶在日本囊对虾先天免疫中的功能研究[D]. 济南: 山东大学, 2016. |
Xie YK. The function analysis of two peroxiredoxin subfamilies in innate immunity of kuruma shrimp marsupenaeus japonicus[D]. Jinan: Shandong University, 2016. | |
[24] | Ran XQ, Gao L, Yan M, et al. Peroxiredoxin 4 interacts with domeless and participates in antibacterial immune response through the JAK/STAT pathway[J]. Front Immunol, 2022, 13: 907183. |
[25] | Odnokoz O, Earland N, Badinloo M, et al. Peroxiredoxins play an important role in the regulation of immunity and aging in Drosophila[J]. Antioxidants, 2023, 12(8): 1616. |
[26] |
Egessa R. Antimicrobial peptides from freshwater invertebrate species: potential for future applications[J]. Mol Biol Rep, 2022, 49(10): 9797-9811.
doi: 10.1007/s11033-022-07483-1 pmid: 35716292 |
[27] | Guryanova SV, Balandin SV, Belogurova-Ovchinnikova OY, et al. Marine invertebrate antimicrobial peptides and their potential as novel peptide antibiotics[J]. Mar Drugs, 2023, 21(10): 503. |
[28] | Safronova VN, Bolosov IA, Kruglikov RN, et al. Novel β-hairpin peptide from marine Polychaeta with a high efficacy against gram-negative pathogens[J]. Mar Drugs, 2022, 20(8): 517. |
[29] | Ding D, Sun XJ, Yan M, et al. The ECSIT mediated Toll3-dorsal-ALFs pathway inhibits bacterial amplification in kuruma shrimp[J]. Front Immunol, 2022, 13: 807326. |
[30] | Ni MQ, Zhang Y, Zheng JB, et al. HSP40 mediated TLR-Dorsal-AMPs pathway in Portunus trituberculatus[J]. Fish Shellfish Immunol, 2023, 133: 108536. |
[31] | Mi R, Li XJ, Sun YX, et al. Effects of microbial community and disease resistance against Vibrio splendidus of Yesso scallop(Patinopecten yessoensis)fed supplementary diets of tussah immunoreactive substances and antimicrobial peptides[J]. Fish Shellfish Immunol, 2022, 121: 446-455. |
[32] | Huang L, Liu Y, Zhang XX, et al. Peroxiredoxin 1 of Procambarus clarkii govern immune responses during pathogen infection[J]. Fish Shellfish Immunol, 2023, 138: 108828. |
[33] | Rattanadilog Na Phuket T, Charoensapsri W, Amparyup P, et al. Antibacterial activity and immunomodulatory role of a proline-rich antimicrobial peptide SpPR-AMP1 against Vibrio campbellii infection in shrimp Litopenaeus vannamei[J]. Fish Shellfish Immunol, 2023, 132:108479 |
[34] | Wanvimonsuk S, Jaree P, Kawai T, et al. Prx4 acts as DAMP in shrimp, enhancing bacterial resistance via the toll pathway and prophenoloxidase activation[J]. iScience, 2022, 26(1): 105793. |
[35] | Huang Y, Jiang Y, Wang MM, et al. Mannose-binding C-type lectin from Procambarus clarkii exhibited antimicrobial activity to mediate crayfish innate immunity[J]. Aquac Rep, 2023, 32: 101707. |
[1] | ZHAO Hong-yuan, LIU Qiang, CHENG Wen-yu. Research Progress in cGAS-STING Signaling Pathway in ASFV Antagonizing Host [J]. Biotechnology Bulletin, 2024, 40(3): 109-117. |
[2] | CHEN Xiao-meng, ZHANG Xue-jing, ZHANG Huan, ZHANG Bao-jiang, SU Yan. Prokaryotic Expression of Recombinant Bovine Mastitis Staphylococcus aureus GapC Protein and Identification of Its B-cell Epitopes [J]. Biotechnology Bulletin, 2023, 39(5): 306-313. |
[3] | YE Hong, WANG Yu-kun. Research Progress in Immune Receptor Functions of Pattern-Recognition Receptor in Plants [J]. Biotechnology Bulletin, 2023, 39(12): 1-15. |
[4] | ZHANG Long-xi, LYU Lin, ZHANG Huan-huan, ZHOU Jin-cheng, CHE Wu-nan, DONG Hui. Research Progress in the Application of RNAi Technology in Parasitoid Wasps [J]. Biotechnology Bulletin, 2023, 39(12): 99-108. |
[5] | CHENG Shen-wei, ZHANG Ke-qiang, LIANG Jun-feng, LIU Fu-yuan, GAO Xing-liang, DU Lian-zhu. Establishment of a Triple Droplet Digital PCR Quantitative Detection Method for Typical Pathogenic Bacteria in Livestock and Poultry Manure [J]. Biotechnology Bulletin, 2022, 38(9): 271-280. |
[6] | CHEN Ying, WANG Yi-lei, ZOU Peng-fei. Cloning and Expression Analysis of TRAF6 from Large Yellow Croaker Larimichthys crocea [J]. Biotechnology Bulletin, 2022, 38(8): 233-243. |
[7] | LIU Xiao-mei, WANG Dong-xin, ZHANG Chun, WEI Shuang-shi. Inhibition of AAV-mediated RNAi to SARS-CoV-2 S Gene Expression [J]. Biotechnology Bulletin, 2022, 38(3): 188-193. |
[8] | GUO Yu-fei, YAN Rong-mei, ZHANG Xiao-ru, CAO Wei, LIU Hao. Metabolic Engineering Modification of Aspergillus niger for the Production of D-glucaric Acid [J]. Biotechnology Bulletin, 2022, 38(11): 227-237. |
[9] | ZOU Chen-chen, RUAN Ling-wei, SHI Hong. Wnt Signaling Pathway and Innate Immunity of Invertebrate [J]. Biotechnology Bulletin, 2021, 37(5): 182-196. |
[10] | LI Kai-qing, LI Ying, WANG Yi-lei, ZOU Peng-fei. The Function of Receptor-interacting Protein(RIP)Kinases and the Research Progress in Teleost Fish [J]. Biotechnology Bulletin, 2021, 37(5): 197-211. |
[11] | PAN Yin-lai, QIU Chun-hui, WANG Yi-lei, ZHANG Zi-ping. Development of RNA Drugs and Its Application in Aquaculture [J]. Biotechnology Bulletin, 2021, 37(2): 203-215. |
[12] | DENG Pu-rong, LIU Yong-bo. Review on the Synergistic Insect-resistant Application of RNAi and Bt-transgenic Technologies [J]. Biotechnology Bulletin, 2021, 37(10): 216-224. |
[13] | XU Xue-liang, WANG Fen-shan, LIU Zi-rong, FAN Lin-juan, JI Xiang-yun, JIANG Jie-xian, YAO Ying-juan. Research Progress of RNA Interference Technology in the Field of Entomology [J]. Biotechnology Bulletin, 2021, 37(1): 255-261. |
[14] | SU Jie, GUO Rong-qi, GAO Yang, YU Xiu-min, LI Guo-jing, WANG Rui-gang. Response to NaCl and ABA in Arabidopsis thaliana of the Double Silent Gene VHA-c2&c4 [J]. Biotechnology Bulletin, 2020, 36(7): 48-54. |
[15] | SONG Hua-li, SUN Xiao-ying, KONG Xiang-hui, LI Li, PEI Chao. Application of RNA Interference Technology in Antiviral and Antiparasitic Research of Aquatic Animals [J]. Biotechnology Bulletin, 2020, 36(2): 193-205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||