Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (10): 122-138.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0410
Previous Articles Next Articles
FENG Kai-yue1(), ZHAO Xin-yan1, LI Zi-yan1, QIU Jiang-ming2(), CAO Yi-bo1()
Received:
2024-04-29
Online:
2024-10-26
Published:
2024-11-20
Contact:
QIU Jiang-ming, CAO Yi-bo
E-mail:2213298711@qq.com;18270730388@163.com;caoyibo@bjfu.edu.cn
FENG Kai-yue, ZHAO Xin-yan, LI Zi-yan, QIU Jiang-ming, CAO Yi-bo. Research Advances in the Molecular Mechanisms of Plant Response to Saline-alkali Stress[J]. Biotechnology Bulletin, 2024, 40(10): 122-138.
Fig. 1 Signaling pathways for homeostasis adaptation in plants under neutral salt stress Under salt stress, OSCA1 and GIPC sense changes in external osmotic pressure and Na+ concentration, respectively, mediating Ca2+ influx. SOS3 binds to Ca2+ and interacts with SOS2, activating SOS1 located on the plasma membrane to promote Na+ transport to the extracellular cell. SCaBP8 and CBL8 perform similar functions. SOS2 interacts with AtANN4 to inhibit its mediation of Ca2+ influx. The 14-3-3λ/κ protein and kinase PKS5 inhibit the activity of SOS2. J3, PKS5, and 14-3-3ω are involved in regulating the activity of AHA2. The phosphorylation of SCaBP8 releases its inhibition of AKT1, promoting K+ uptake under salt stress. NHXs, V H+-ATPase, CLCs, and ZmMATE29 located on the vacuolar membrane are involved in the compartmentalization of Na+ and Cl-, respectively. The 14-3-3 proteins activate the K+ efflux channel GORK through both CPK21-dependent and independent pathway, while AtPP2CA inhibits the activity of GORK
Fig. 2 Molecular mechanism of ABA signaling mediating stomatal closure under neutral salt stress Under normal conditions, PP2C binds to SnRK2s protein and inhibits its activity; TOR phosphorylates PYR/PYL/RCAR and suppresses PYR/PYL/RCAR binding to ABA. Under osmotic stress, PP2C forms a complex with PYR/PYL/RCAR to release SnRK2s protein and activate the transcription factor AREB/ABF and the anion channel SLAC1/QUAC1. ABF4 in Arabidopsis thaliana L. activates the expressions of FYVE1 and promote PYR/PYL degradation. Phosphorylation of RaptorB by SnRK2s promotes the dissociation of the TOR complex. SnRK2s can also inhibit the activity of KAT1, decrease cellular turgor pressure, and promote stomatal closure
Fig. 3 Ion transporters mediating the transport and compartmentalization of Na+, K+, and Cl- under neutral salt stress Na+ enters the root epidermal cells through NSCCs and high-affinity K+ transporters such as OSHKT2;1, while SOS1 mediates Na+ efflux. GORK and NSCCs mediate K+ efflux under salt stress. HAK5 and AKT1 mediate K+ influx. In root cortex cells, NPF2.5 is responsible for Cl- efflux, while ZmMATE29 and CLCs transports Cl- into the vacuole. NHX might be involved in the regulation of Na+ compartmentalization into the vacuole. Salt stress induces the expressions of ZmESBL increased, promoting CS development and inhibiting Na+ loading into the xylem via the apoplastic pathway. The CIF-GSO1/SGN3-SGN1 pathway can also enhance the function of the apoplastic barrier. In xylem parenchyma cells, Na+ loading into the xylem is mediated by OsHKT2;1 and SOS1. HKT1, ZmHAK4, and OsHAK12 transport Na+ from xylem vessels to parenchyma cells. SKOR mediates K+ loading into the xylem; while ZmHKT2 removes K+ from the xylem. NPF2.4 and SLAH1/3 mediate the loading and unloading of Cl- in the root xylem
Fig. 4 Molecular mechanism of regulating plasma membrane H+-ATPase activity in plant response to alkaline salt stress Small peptides(Peps)and receptors(PEPRs)sense changes in extracellular pH and activate downstream signaling pathways. Under alkaline salt stress, the cytosolic Ca2+ concentration increases, and SCaBP3 senses the Ca2+ signal and relieves the inhibition of AHA2. Moreover, J3 can inhibit the inhibition of AHA2 by PKS5. Ca2+ binds to ZmNSA1 and induces its degradation through the 26S proteasome pathway, upregulating the expression levels of MHA2 and MHA4. The MPK cascade pathway regulates the transcriptional level and protein activity of PM H+-ATPase under salt stress. Under alkali stress, TaCCD1 and TaSAUR215 interact to inhibit the dephosphorylation of TaPP2C.D1/8 on TaHA2 and enhance the activity of TaHA2
[1] |
Ismail AM, Horie T. Genomics, physiology, and molecular breeding approaches for improving salt tolerance[J]. Annu Rev Plant Biol, 2017, 68: 405-434.
doi: 10.1146/annurev-arplant-042916-040936 pmid: 28226230 |
[2] | 云雪雪, 陈雨生. 国际盐碱地开发动态及其对我国的启示[J]. 国土与自然资源研究, 2020(1): 84-87. |
Yun XX, Chen YS. International development of saline-alkali land and its enlightenment to China[J]. Territ Nat Resour Study, 2020(1): 84-87. | |
[3] | Zörb C, Geilfus CM, Dietz KJ. Salinity and crop yield[J]. Plant Biol, 2018, 21: 31-38. |
[4] | 马国辉, 郑殿峰, 母德伟, 等. 耐盐碱水稻研究进展与展望[J]. 杂交水稻, 2024, 39(1): 1-10. |
Ma GH, Zheng DF, Mu DW, et al. Research progress and prospect of saline-alkali tolerant rice[J]. Hybrid Rice, 2024, 39(1): 1-10. | |
[5] | 王佺珍, 刘倩, 高娅妮, 等. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报, 2017, 37(16): 5565-5577. |
Wang QZ, Liu Q, Gao YN, et al. Review on the mechanisms of the response to salinity-alkalinity stress in plants[J]. Acta Ecol Sin, 2017, 37(16): 5565-5577. | |
[6] | Guo R, Yang ZZ, Li F, et al. Comparative metabolic responses and adaptive strategies of wheat(Triticum aestivum)to salt and alkali stress[J]. BMC Plant Biol, 2015, 15: 170. |
[7] | Shi DC, Wang DL. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense(Trin.) Kitag[J]. Plant Soil, 2005, 271(1): 15-26. |
[8] | Li H, Shi JY, Wang ZP, et al. H2S pretreatment mitigates the alkaline salt stress on Malus hupehensis roots by regulating Na+/K+ homeostasis and oxidative stress[J]. Plant Physiol Biochem, 2020, 156: 233-241. |
[9] | Li XY, Li SX, Wang JH, et al. Exogenous abscisic acid alleviates harmful effect of salt and alkali stresses on wheat seedlings[J]. Int J Environ Res Public Health, 2020, 17(11): 3770. |
[10] | Zhang S, Wu QR, Liu LL, et al. Osmotic stress alters circadian cytosolic Ca2+ oscillations and OSCA1 is required in circadian gated stress adaptation[J]. Plant Signal Behav, 2020, 15(12): 1836883. |
[11] | Jiang ZH, Zhou XP, Tao M, et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx[J]. Nature, 2019, 572(7769): 341-346. |
[12] | Chen K, Gao JH, Sun SJ, et al. BONZAI proteins control global osmotic stress responses in plants[J]. Curr Biol, 2020, 30(24): 4815-4825.e4. |
[13] | Yan JW, Liu Y, Yan JW, et al. The salt-activated CBF1/CBF2/CBF3-GALS1 module fine-tunes galactan-induced salt hypersensitivity in Arabidopsis[J]. J Integr Plant Biol, 2023, 65(8): 1904-1917. |
[14] | Yan JW, Liu Y, Yang L, et al. Cell wall β-1, 4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana[J]. Mol Plant, 2021, 14(3): 411-425. |
[15] | Hsu PK, Dubeaux G, Takahashi Y, et al. Signaling mechanisms in abscisic acid-mediated stomatal closure[J]. Plant J, 2021, 105(2): 307-321. |
[16] |
Yoshida T, Mogami J, Yamaguchi-Shinozaki K. Omics approaches toward defining the comprehensive abscisic acid signaling network in plants[J]. Plant Cell Physiol, 2015, 56(6): 1043-1052.
doi: 10.1093/pcp/pcv060 pmid: 25917608 |
[17] |
Sah SK, Reddy KR, Li JX. Abscisic acid and abiotic stress tolerance in crop plants[J]. Front Plant Sci, 2016, 7: 571.
doi: 10.3389/fpls.2016.00571 pmid: 27200044 |
[18] | Wang YH, Que F, Li T, et al. DcABF3, an ABF transcription factor from carrot, alters stomatal density and reduces ABA sensitivity in transgenic Arabidopsis[J]. Plant Sci, 2021, 302: 110699. |
[19] | Jing YN, Yu Y, Wang HZ, et al. Genome-wide identification and expression analysis of the bZIP gene family in silver birch(Betula pendula Roth.)[J]. J For Res, 2022, 33(5): 1615-1636. |
[20] | Pan XJ, Wang CL, Liu ZS, et al. Identification of ABF/AREB gene family in tomato(Solanum lycopersicum L.) and functional analysis of ABF/AREB in response to ABA and abiotic stresses[J]. PeerJ, 2023, 11: e15310. |
[21] | Jin DJ, Li SQ, Li ZP, et al. Arabidopsis ABRE-binding factors modulate salinity-induced inhibition of root hair growth by interacting with and suppressing RHD6[J]. Plant Sci, 2023, 332: 111728. |
[22] | Pan WC, Zheng PP, Zhang C, et al. The effect of abre binding factor 4-mediated fyve1 on salt stress tolerance in Arabidopsis[J]. Plant Sci, 2020, 296: 110489. |
[23] |
Dong T, Park Y, Hwang I. Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling[J]. Essays Biochem, 2015, 58: 29-48.
doi: 10.1042/bse0580029 pmid: 26374885 |
[24] |
Chen XX, Ding YL, Yang YQ, et al. Protein kinases in plant responses to drought, salt, and cold stress[J]. J Integr Plant Biol, 2021, 63(1): 53-78.
doi: 10.1111/jipb.13061 |
[25] |
Niu ML, Sun ST, Nawaz MA, et al. Grafting cucumber onto pumpkin induced early stomatal closure by increasing ABA sensitivity under salinity conditions[J]. Front Plant Sci, 2019, 10: 1290.
doi: 10.3389/fpls.2019.01290 pmid: 31781131 |
[26] |
Wang PC, Zhao Y, Li ZP, et al. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response[J]. Mol Cell, 2018, 69(1): 100-112.e6.
doi: S1097-2765(17)30930-9 pmid: 29290610 |
[27] | Su Y, Luo WG, Lin WH, et al. Model of cation transportation mediated by high-affinity potassium transporters(HKTs)in higher plants[J]. Biol Proced Online, 2015, 17: 1. |
[28] |
Munns R, Passioura JB, Colmer TD, et al. Osmotic adjustment and energy limitations to plant growth in saline soil[J]. New Phytol, 2020, 225(3): 1091-1096.
doi: 10.1111/nph.15862 pmid: 31006123 |
[29] |
Batelli G, Verslues PE, Agius F, et al. SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity[J]. Mol Cell Biol, 2007, 27(22): 7781-7790.
doi: 10.1128/MCB.00430-07 pmid: 17875927 |
[30] | Cao YB, Zhang M, Liang XY, et al. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline-alkaline tolerance in maize[J]. Nat Commun, 2020, 11(1): 186. |
[31] | Kumar G, Basu S, Singla-Pareek SL, et al. Unraveling the contribution of OsSOS2 in conferring salinity and drought tolerance in a high-yielding rice[J]. Physiol Plant, 2022, 174(1): e13638. |
[32] | Quan RD, Lin HX, Mendoza I, et al. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J]. Plant Cell, 2007, 19(4): 1415-1431. |
[33] |
Steinhorst L, He GF, Moore LK, et al. A Ca2+-sensor switch for tolerance to elevated salt stress in Arabidopsis[J]. Dev Cell, 2022, 57(17): 2081-2094.e7.
doi: 10.1016/j.devcel.2022.08.001 pmid: 36007523 |
[34] | Yin XC, Xia YQ, Xie Q, et al. The protein kinase complex CBL10-CIPK8-SOS1 functions in Arabidopsis to regulate salt tolerance[J]. J Exp Bot, 2020, 71(6): 1801-1814. |
[35] | Xie Q, Yin XC, Wang Y, et al. The signalling pathways, calcineurin B-like protein 5(CBL5)-CBL-interacting protein kinase 8(CIPK8)/CIPK24-salt overly sensitive 1(SOS1), transduce salt signals in seed germination in Arabidopsis[J]. Plant Cell Environ, 2024, 47(5): 1486-1502. |
[36] | Zhou HP, Lin HX, Chen S, et al. Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins[J]. Plant Cell, 2014, 26(3): 1166-1182. |
[37] |
Yang ZJ, Wang CW, Xue Y, et al. Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance[J]. Nat Commun, 2019, 10(1): 1199.
doi: 10.1038/s41467-019-09181-2 pmid: 30867421 |
[38] | Cha JY, Kim J, Jeong SY, et al. The Na+/H+ antiporter salt overly sensitive 1 regulates salt compensation of circadian rhythms by stabilizing GIGANTEA in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2022, 119(33): e2207275119. |
[39] |
Ma L, Ye JM, Yang YQ, et al. The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress[J]. Dev Cell, 2019, 48(5): 697-709.e5.
doi: S1534-5807(19)30101-7 pmid: 30861376 |
[40] |
Li JF, Zhou XY, Wang Y, et al. Inhibition of the maize salt overly sensitive pathway by ZmSK3 and ZmSK4[J]. J Genet Genomics, 2023, 50(12): 960-970.
doi: 10.1016/j.jgg.2023.04.010 pmid: 37127254 |
[41] | Plasencia FA, Estrada Y, Flores FB, et al. The Ca2+ sensor calcineurin B-like protein 10 in plants: emerging new crucial roles for plant abiotic stress tolerance[J]. Front Plant Sci, 2021, 11: 599944. |
[42] | Barragán V, Leidi EO, Andrés Z, et al. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis[J]. Plant Cell, 2012, 24(3): 1127-1142. |
[43] | Sun MH, Ma QJ, Hu DG, et al. The glucose sensor MdHXK1 phosphorylates a tonoplast Na+/H+ exchanger to improve salt tolerance[J]. Plant Physiol, 2018, 176(4): 2977-2990. |
[44] | Ding CJ, Zhang WX, Li D, et al. Effect of overexpression of JERFs on intracellular K+/Na+ balance in transgenic poplar(Populus alba × P. berolinensis)under salt stress[J]. Front Plant Sci, 2020, 11: 1192. |
[45] |
Sunarpi, Horie T, Motoda J, et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells[J]. Plant J, 2005, 44(6): 928-938.
doi: 10.1111/j.1365-313X.2005.02595.x pmid: 16359386 |
[46] | Byrt CS, Xu B, Krishnan M, et al. The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat[J]. Plant J, 2014, 80(3): 516-526. |
[47] | Ren ZJ, Liu Y, Kang D, et al. Two alternative splicing variants of maize HKT1;1 confer salt tolerance in transgenic tobacco plants[J]. Plant Cell Tissue Organ Cult PCTOC, 2015, 123(3): 569-578. |
[48] | Kobayashi NI, Yamaji N, Yamamoto H, et al. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice[J]. Plant J, 2017, 91(4): 657-670. |
[49] |
Henderson SW, Dunlevy JD, Wu Y, et al. Functional differences in transport properties of natural HKT1;1 variants influence shoot Na+ exclusion in grapevine rootstocks[J]. New Phytol, 2018, 217(3): 1113-1127.
doi: 10.1111/nph.14888 pmid: 29160564 |
[50] |
Cao YB, Zhou XY, Song HF, et al. Advances in deciphering salt tolerance mechanism in maize[J]. Crop J, 2023, 11(4): 1001-1010..
doi: 10.1016/j.cj.2022.12.004 |
[51] | Song HF, Cao YB, Zhao XY, et al. Na+-preferential ion transporter HKT1;1 mediates salt tolerance in blueberry[J]. Plant Physiol, 2023, 194(1): 511-529. |
[52] | Baek D, Jiang JF, Chung JS, et al. Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance[J]. Plant Cell Physiol, 2011, 52(1): 149-161. |
[53] | Wang J, Nan N, Li N, et al. A DNA methylation reader-chaperone regulator-transcription factor complex activates OsHKT1;5 expression during salinity stress[J]. Plant Cell, 2020, 32(11): 3535-3558. |
[54] |
Liu YT, Chen X, Xue SY, et al. SET DOMAIN GROUP 721 protein functions in saline-alkaline stress tolerance in the model rice variety Kitaake[J]. Plant Biotechnol J, 2021, 19(12): 2576-2588.
doi: 10.1111/pbi.13683 pmid: 34416090 |
[55] |
Yu J, Zhu CS, Xuan W, et al. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice[J]. Nat Commun, 2023, 14(1): 3550.
doi: 10.1038/s41467-023-39167-0 pmid: 37321989 |
[56] | Chu ML, Chen PW, Meng SF, et al. The Arabidopsis phosphatase PP2C49 negatively regulates salt tolerance through inhibition of AtHKT1;1[J]. J Integr Plant Biol, 2021, 63(3): 528-542. |
[57] | Liu YT, Li MT, Yu JL, et al. Plasma membrane-localized Hsp40/DNAJ chaperone protein facilitates OsSUVH7-OsBAG4-OsMYB106 transcriptional complex formation for OsHKT1;5 activation[J]. J Integr Plant Biol, 2023, 65(1): 265-279. |
[58] | Horie T, Costa A, Kim TH, et al. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth[J]. EMBO J, 2007, 26(12): 3003-3014. |
[59] | Wang XH, Shen XS, Qu YN, et al. Structural insights into ion selectivity and transport mechanisms of Oryza sativa HKT2;1 and HKT2;2/1 transporters[J]. Nat Plants, 2024, 10(4): 633-644. |
[60] |
Zhang M, Liang XY, Wang LM, et al. A HAK family Na+ transporter confers natural variation of salt tolerance in maize[J]. Nat Plants, 2019, 5(12): 1297-1308.
doi: 10.1038/s41477-019-0565-y pmid: 31819228 |
[61] | Zhang LN, Sun XY, Li YF, et al. Rice Na+-permeable transporter OsHAK12 mediates shoots Na+ exclusion in response to salt stress[J]. Front Plant Sci, 2021, 12: 771746. |
[62] | Wang Z, Hong YC, Zhu GT, et al. Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter[J]. EMBO J, 2020, 39(10): e103256. |
[63] | Uddin N, Li X, Ullah MW, et al. Lignin developmental patterns and Casparian strip as apoplastic barriers: a review[J]. Int J Biol Macromol, 2024, 260(Pt 2): 129595. |
[64] | Chen AL, Liu T, Wang Z, et al. Plant root suberin: a layer of defence against biotic and abiotic stresses[J]. Front Plant Sci, 2022, 13: 1056008. |
[65] | Chen CX, He GF, Li JF, et al. A salt stress-activated GSO1-SOS2-SOS1 module protects the Arabidopsis root stem cell niche by enhancing sodium ion extrusion[J]. EMBO J, 2023, 42(13): e113004. |
[66] |
Wang YY, Cao YB, Liang XY, et al. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize[J]. Nat Commun, 2022, 13(1): 2222.
doi: 10.1038/s41467-022-29809-0 pmid: 35468878 |
[67] | Gao J, Mol S, et al. The Arabidopsis GORK K+-channel is phosphorylated by calcium-dependent protein kinase 21(CPK21), which in turn is activated by 14-3-3 proteins[J]. Plant Physiol Biochem, 2018, 125: 219-231. |
[68] |
Lefoulon C, Boeglin M, Moreau B, et al. The Arabidopsis AtPP2CA protein phosphatase inhibits the GORK K+ efflux channel and exerts a dominant suppressive effect on phosphomimetic-activating mutations[J]. J Biol Chem, 2016, 291(12): 6521-6533.
doi: 10.1074/jbc.M115.711309 pmid: 26801610 |
[69] | Wu HH, Shabala L, Zhou MX, et al. Chloroplast-generated ROS dominate NaCl(-)induced K(+)efflux in wheat leaf mesophyll[J]. Plant Signal Behav, 2015, 10(5): e1013793. |
[70] |
Horie T, Sugawara M, Okada T, et al. Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells[J]. J Biosci Bioeng, 2011, 111(3): 346-356.
doi: 10.1016/j.jbiosc.2010.10.014 pmid: 21084222 |
[71] | Chen G, Hu QD, Luo L, et al. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges[J]. Plant Cell Environ, 2015, 38(12): 2747-2765. |
[72] | Shen Y, Shen LK, Shen ZX, et al. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice[J]. Plant Cell Environ, 2015, 38(12): 2766-2779. |
[73] | Okada T, Yamane S, Yamaguchi M, et al. Characterization of rice KT/HAK/KUP potassium transporters and K+ uptake by HAK1 from Oryza sativa[J]. Plant Biotechnol, 2018, 35(2): 101-111. |
[74] | Ren XL, Qi GN, Feng HQ, et al. Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis[J]. Plant J, 2013, 74(2): 258-266. |
[75] | Li JF, Shen LK, Han XL, et al. Phosphatidic acid-regulated SOS2 controls sodium and potassium homeostasis in Arabidopsis under salt stress[J]. EMBO J, 2023, 42(8): e112401. |
[76] |
Nieves-Cordones M, Amo J, Hurtado-Navarro L, et al. Inhibition of SlSKOR by SlCIPK23-SlCBL1/9 uncovers CIPK-CBL-target network rewiring in land plants[J]. New Phytol, 2023, 238(6): 2495-2511.
doi: 10.1111/nph.18910 pmid: 36967582 |
[77] | Brodsky DE. SLAC1-related signal transduction pathway involved in ABA- induced stomatal closure and K+ selective transport by the OsHKT2;4 transporter from rice(Oryza sativa)with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions[D]. California: UC San Diego, 2011. |
[78] |
Sassi A, Mieulet D, Khan I, et al. The rice monovalent cation transporter OsHKT2;4: revisited ionic selectivity[J]. Plant Physiol, 2012, 160(1): 498-510.
doi: 10.1104/pp.112.194936 pmid: 22773759 |
[79] | Cao YB, Liang XY, Yin P, et al. A domestication-associated reduction in K+-preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance[J]. New Phytol, 2019, 222(1): 301-317. |
[80] | Geilfus CM. Chloride: from nutrient to toxicant[J]. Plant Cell Physiol, 2018, 59(5): 877-886. |
[81] |
Ren ZJ, Bai FL, Xu JW, et al. A chloride efflux transporter, BIG RICE GRAIN 1, is involved in mediating grain size and salt tolerance in rice[J]. J Integr Plant Biol, 2021, 63(12): 2150-2163.
doi: 10.1111/jipb.13178 |
[82] |
Franco-Navarro JD, Brumós J, Rosales MA, et al. Chloride regulates leaf cell size and water relations in tobacco plants[J]. J Exp Bot, 2016, 67(3): 873-891.
doi: 10.1093/jxb/erv502 pmid: 26602947 |
[83] | Wu HH, Li ZH. The importance of Cl- exclusion and vacuolar Cl- sequestration: revisiting the role of Cl- transport in plant salt tolerance[J]. Front Plant Sci, 2019, 10: 1418. |
[84] | Li B, Byrt C, Qiu JE, et al. Identification of a stelar-localized transport protein that facilitates root-to-shoot transfer of chloride in Arabidopsis[J]. Plant Physiol, 2016, 170(2): 1014-1029. |
[85] | Li B, Qiu JE, Jayakannan M, et al. AtNPF2.5 modulates chloride(Cl-)efflux from roots of Arabidopsis thaliana[J]. Front Plant Sci, 2017, 7: 2013. |
[86] |
Cubero-Font P, Maierhofer T, Jaslan J, et al. Silent S-type anion channel subunit SLAH1 gates SLAH3 open for chloride root-to-shoot translocation[J]. Curr Biol, 2016, 26(16): 2213-2220.
doi: 10.1016/j.cub.2016.06.045 pmid: 27397895 |
[87] | Qiu JE, Henderson SW, Tester M, et al. SLAH1, a homologue of the slow type anion channel SLAC1, modulates shoot Cl- accumulation and salt tolerance in Arabidopsis thaliana[J]. J Exp Bot, 2016, 67(15): 4495-4505. |
[88] | Colmenero-Flores JM, Franco-Navarro JD, Cubero-Font P, et al. Chloride as a beneficial macronutrient in higher plants: new roles and regulation[J]. Int J Mol Sci, 2019, 20(19): 4686. |
[89] |
Henderson SW, Wege S, Qiu JE, et al. Grapevine and Arabidopsis cation-chloride cotransporters localize to the Golgi and trans-golgi network and indirectly influence long-distance ion transport and plant salt tolerance[J]. Plant Physiol, 2015, 169(3): 2215-2229.
doi: 10.1104/pp.15.00499 pmid: 26378102 |
[90] | McKay DW, McFarlane HE, Qu Y, et al. Plant Trans-Golgi Network/Early Endosome pH regulation requires Cation Chloride Cotransporter(CCC1)[J]. eLife, 2022, 11: e70701. |
[91] | Jossier M, Kroniewicz L, Dalmas F, et al. The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance[J]. Plant J, 2010, 64(4): 563-576. |
[92] |
Nguyen CT, Agorio A, Jossier M, et al. Characterization of the chloride channel-like, AtCLCg, involved in chloride tolerance in Arabidopsis thaliana[J]. Plant Cell Physiol, 2016, 57(4): 764-775.
doi: 10.1093/pcp/pcv169 pmid: 26556649 |
[93] | De Angeli A, Zhang JB, Meyer S, et al. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis[J]. Nat Commun, 2013, 4: 1804. |
[94] | Yin P, Liang XY, Zhao HS, et al. Cytokinin signaling promotes salt tolerance by modulating shoot chloride exclusion in maize[J]. Mol Plant, 2023, 16(6): 1031-1047. |
[95] | Mimata Y, Munemasa S, Akter F, et al. Malate induces stomatal closure via a receptor-like kinase GHR1- and reactive oxygen species-dependent pathway in Arabidopsis thaliana[J]. Biosci Biotechnol Biochem, 2022, 86(10): 1362-1367. |
[96] | Liu P, Wu XL, Gong BB, et al. Review of the mechanisms by which transcription factors and exogenous substances regulate ROS metabolism under abiotic stress[J]. Antioxidants, 2022, 11(11): 2106. |
[97] | Wang LQ, Zhang CR, Wang YM, et al. Tamarix hispida aquaporin ThPIP2;5 confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis[J]. Environ Exp Bot, 2018, 152: 158-166. |
[98] | Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48(12): 909-930. |
[99] | Hasanuzzaman M, Bhuyan MHMB, Anee TI, et al. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress[J]. Antioxidants, 2019, 8(9): 384. |
[100] | Kohli SK, Khanna K, Bhardwaj R, et al. Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signaling molecules[J]. Antioxidants, 2019, 8(12): 641. |
[101] | Suo JW, Zhang H, Zhao Q, et al. Na2CO3-responsive photosynthetic and ROS scavenging mechanisms in chloroplasts of alkaligrass revealed by phosphoproteomics[J]. Genomics Proteomics Bioinformatics, 2020, 18(3): 271-288. |
[102] | Sharma A, Shahzad B, Kumar V, et al. Phytohormones regulate accumulation of osmolytes under abiotic stress[J]. Biomolecules, 2019, 9(7): 285. |
[103] | Hasanuzzaman M, Alam MM, Rahman A, et al. Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice(Oryza sativa L.) varieties[J]. Biomed Res Int, 2014, 2014: 757219. |
[104] | Zhao K, Cheng ZH, Guo Q, et al. Characterization of the poplar R2R3-MYB gene family and over-expression of PsnMYB108 confers salt tolerance in transgenic tobacco[J]. Front Plant Sci, 2020, 11: 571881. |
[105] | Liu L, Song W, Huang SJ, et al. Extracellular pH sensing by plant cell-surface peptide-receptor complexes[J]. Cell, 2022, 185(18): 3341-3355.e13. |
[106] | Zhang HL, Yu FF, Xie P, et al. A Gγ protein regulates alkaline sensitivity in crops[J]. Science, 2023, 379(6638): eade8416. |
[107] | Duan XB, Yu Y, Zhang Y, et al. A potential efflux boron transporter gene GsBOR2, positively regulates Arabidopsis bicarbonate tolerance[J]. Plant Sci, 2018, 274: 284-292. |
[108] | Cao L, Yu Y, DuanMu HZ, et al. A novel Glycine soja homeodomain-leucine zipper(HD-Zip)I gene, Gshdz4, positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis[J]. BMC Plant Biol, 2016, 16(1): 184. |
[109] | Liu D, Ma Y, Rui MM, et al. Is high pH the key factor of alkali stress on plant growth and physiology? A case study with wheat(Triticum aestivum L.) seedlings[J]. Agronomy, 2022, 12(8): 1820. |
[110] | Chen C, Sun XL, Duanmu HZ, et al. GsCML27, a gene encoding a calcium-binding ef-hand protein from Glycine soja, plays differential roles in plant responses to bicarbonate, salt and osmotic stresses[J]. PLoS One, 2015, 10(11): e0141888. |
[111] | Tian W, Hou CC, Ren ZJ, et al. A molecular pathway for CO2 response in Arabidopsis guard cells[J]. Nat Commun, 2015, 6: 6057. |
[112] | Janicka M, Wdowikowska A, Kłobus G. Assay of plasma membrane H+-ATPase in plant tissues under abiotic stresses[J]. Methods Mol Biol, 2018, 1696: 205-215. |
[113] | 刘奕媺, 于洋, 方军. 盐碱胁迫及植物耐盐碱分子机制研究[J]. 土壤与作物, 2018, 7(2): 201-211. |
Liu YM, Yu Y, Fang J. Saline-alkali stress and molecular mechanism of saline-alkali tolerance in plants[J]. Soils Crops, 2018, 7(2): 201-211. | |
[114] | Zhou LJ, Zhang CL, Zhang RF, et al. The SUMO E3 ligase MdSIZ1 targets MdbHLH104 to regulate plasma membrane H+-ATPase activity and iron homeostasis[J]. Plant Physiol, 2019, 179(1): 88-106. |
[115] | Kinoshita SN, Suzuki T, Kiba T, et al. Photosynthetic-product-dependent activation of plasma membrane H+-ATPase and nitrate uptake in Arabidopsis leaves[J]. Plant Cell Physiol, 2023, 64(2): 191-203. |
[116] | Jia BW, Cui HL, Zhang DJ, et al. The conserved evolution of plant H+-ATPase family and the involvement of soybean H+-ATPases in sodium bicarbonate stress responses[J]. Plant Physiol Biochem, 2023, 204: 108133. |
[117] |
Fuglsang AT, Guo Y, Cuin TA, et al. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein[J]. Plant Cell, 2007, 19(5): 1617-1634.
doi: 10.1105/tpc.105.035626 pmid: 17483306 |
[118] | Lin HX, Du WM, Yang YQ, et al. A calcium-independent activation of the Arabidopsis SOS2-like protein kinase24 by its interacting SOS3-like calcium binding protein1[J]. Plant Physiol, 2014, 164(4): 2197-2206. |
[119] | Yang YQ, Qin YX, Xie CG, et al. The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase[J]. Plant Cell, 2010, 22(4): 1313-1332. |
[120] | Pallucca R, Visconti S, Camoni L, et al. Specificity of ε and non-ε isoforms of Arabidopsis 14-3-3 proteins towards the H+-ATPase and other targets[J]. PLoS One, 2014, 9(6): e90764. |
[121] | Yang YQ, Wu YJ, Ma L, et al. The Ca2+ sensor SCaBP3/CBL7 modulates plasma membrane H+-ATPase activity and promotes alkali tolerance in Arabidopsis[J]. Plant Cell, 2019, 31(6): 1367-1384. |
[122] | Liu X, Wu YJ, Fu HQ, et al. SCaBP3/CBL7 negatively regulates the plasma membrane H+-ATPase and modulates hypocotyl elongation in Arabidopsis[J]. Plant Signal Behav, 2022, 17(1): 2092699. |
[123] | Cui MH, Li YP, Li JH, et al. Ca2+-dependent TaCCD1 cooperates with TaSAUR215 to enhance plasma membrane H+-ATPase activity and alkali stress tolerance by inhibiting PP2C-mediated dephosphorylation of TaHA2 in wheat[J]. Mol Plant, 2023, 16(3): 571-587. |
[124] | Sun QR, Zhao DR, Gao M, et al. MxMPK6-2-mediated phosphorylation enhances the responseof apple rootstocks to Fe deficiency by activating PM H+-ATPase MxHA2[J]. Plant J, 2023, 116(1): 69-86. |
[125] |
Lin HX, Zhu MZ, Yano M, et al. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance[J]. Theor Appl Genet, 2004, 108(2): 253-260.
doi: 10.1007/s00122-003-1421-y pmid: 14513218 |
[126] | He YQ, Yang B, He Y, et al. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice[J]. Plant J, 2019, 97(6): 1089-1104. |
[127] |
Zhang M, Cao YB, Wang ZP, et al. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize[J]. New Phytol, 2018, 217(3): 1161-1176.
doi: 10.1111/nph.14882 pmid: 29139111 |
[128] | Zhang M, Li YD, Liang XY, et al. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize[J]. Plant Biotechnol J, 2023, 21(1): 97-108. |
[129] | Huang SB, Spielmeyer W, Lagudah ES, et al. A sodium transporter(HKT7)is a candidate for Nax1, a gene for salt tolerance in durum wheat[J]. Plant Physiol, 2006, 142(4): 1718-1727. |
[130] | James RA, Blake C, Byrt CS, et al. Major genes for Na+ exclusion, Nax1 and Nax2(wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions[J]. J Exp Bot, 2011, 62(8): 2939-2947. |
[131] |
Munns R, James RA, Xu B, et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene[J]. Nat Biotechnol, 2012, 30(4): 360-364.
doi: 10.1038/nbt.2120 pmid: 22407351 |
[132] | Wang M, Cheng J, Wu JH, et al. Variation in TaSPL6-D confers salinity tolerance in bread wheat by activating TaHKT1;5-D while preserving yield-related traits[J]. Nat Genet, 2024, 56(6): 1257-1269. |
[133] | Luo TT, Ma CX, Fan YH, et al. CRISPR-Cas9-mediated editing of GmARM improves resistance to multiple stresses in soybean[J]. Plant Sci, 2024, 346: 112147. |
[134] | Mohamed HI, Khan A, Basit A. CRISPR-Cas9 system mediated genome editing technology: an ultimate tool to enhance abiotic stress in crop plants[J]. J Soil Sci Plant Nutr, 2024, 24(2): 1799-1822. |
[135] | Yang MZ, Zhou BY, Song ZG, et al. A calmodulin-like protein PvCML9 negatively regulates salt tolerance[J]. Plant Physiol Biochem, 2024, 210: 108642. |
[136] | Ly LK, Ho TM, Bui TP, et al. CRISPR/Cas9 targeted mutations of OsDSG1 gene enhanced salt tolerance in rice[J]. Funct Integr Genomics, 2024, 24(2): 70. |
[1] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[2] | YU Bo, QIN Xiao-hui, ZHAO Yang. Mechanisms of Plant Sensing Drought Signals [J]. Biotechnology Bulletin, 2023, 39(11): 6-17. |
[3] | XU Hong-yun, ZHANG Ming-yi. AtSCL4,an Arabidopsis thaliana GRAS Transcription Factor,Negatively Modulates Plants in Response to Osmotic Stress [J]. Biotechnology Bulletin, 2022, 38(6): 129-135. |
[4] | HU Hua-ran, DU Lei, ZHANG Rui-hao, ZHONG Qiu-yue, LIU Fa-wan, GUI Min. Research Progress in the Adaptation of Hot Pepper(Capsicum annuum L.)to Abiotic Stress [J]. Biotechnology Bulletin, 2022, 38(12): 58-72. |
[5] | JIANG Huan-huan, WANG Tong, CHEN Na, YU Shan-lin, CHI Xiao-yuan, WANG Mian, QI Pei-shi. Research Progress in PGPR Improving Plant's Resistance to Salt and Alkali [J]. Biotechnology Bulletin, 2019, 35(10): 189-197. |
[6] | WANG Na, GONG Na, LIU Guo-li, MA Xiao-ying, YANG Zhen, YANG Tao. Expression Profile Analysis of Maize Resistance Under Osmotic Stress Induced by Secondary Metabolites of Endophytes [J]. Biotechnology Bulletin, 2016, 32(7): 87-92. |
[7] | Huina, Meng Yuping, Hao Ziqi, Li Qian, Cao Qiufen. ZjAPX Gene Improving Resistance to NaCl and Drought Stress in Arabidopsis [J]. Biotechnology Bulletin, 2013, 0(1): 78-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||