Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (10): 108-121.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0327
Previous Articles Next Articles
ZHANG Yan-yan1,2,3,4(), LU Du-xian1,2,3,4, ZUO Xin-xiu1,2,3,4, LI Yan-jun1,2,3,4, LIN Jin-xing1,2,3,4, CUI Ya-ning1,2,3,4()
Received:
2024-04-07
Online:
2024-10-26
Published:
2024-11-20
Contact:
CUI Ya-ning
E-mail:zyy3230184@bjfu.edu.cn;cuiyaning@bjfu.edu.cn
ZHANG Yan-yan, LU Du-xian, ZUO Xin-xiu, LI Yan-jun, LIN Jin-xing, CUI Ya-ning. Advances in Methylation and Acetylation Modification of RNA in Plant Growth and Development[J]. Biotechnology Bulletin, 2024, 40(10): 108-121.
修饰类型Type of modification | 生长发育Growth and development | 蛋白/基因Protein/Gene | 物种Species | 参考文献Reference |
---|---|---|---|---|
m6A | 影响种子发育 | MTA | 拟南芥 | [ |
对抗叶片衰老 | MTA | 拟南芥 | [ | |
调节光合作用 | At5g01920 | 拟南芥 | [ | |
促进果实成熟 | MTA, MTB, ALKBH2 | 草莓,番茄 | [ | |
影响光形态建成 | CRY1, FIP37 | 拟南芥 | [ | |
刺激器官发生 | ECT2, ECT3, ECT4 | 拟南芥 | [ | |
增强根系生长 分蘖芽形成 | FTO | 水稻,马铃薯 | [ | |
调控花期 | ALKBH10B | 拟南芥 | [ | |
m1A | 调节叶片发育 | PhTRMT61A | 矮牵牛 | [ |
m5C | 调节光合作用 叶绿体和质体发育 | TRM4B | 拟南芥 | [ |
影响根系发育 | AtTRM4a, AtTRM4b | 拟南芥 | [ | |
调节叶片发育 | PhNop2, ALYREF | 矮牵牛 | [ | |
ac4C | 调节种子发育 影响叶生长 | OsNAT10, AtNAT10a, AtNAT10b | 拟南芥,水稻 | [ |
促进果实成熟 | Solyc02g036350.3, Solyc06g053710.3等 | 番茄 | [ |
Table 1 Function of RNA methylation and acetylation modifications in plant growth and development
修饰类型Type of modification | 生长发育Growth and development | 蛋白/基因Protein/Gene | 物种Species | 参考文献Reference |
---|---|---|---|---|
m6A | 影响种子发育 | MTA | 拟南芥 | [ |
对抗叶片衰老 | MTA | 拟南芥 | [ | |
调节光合作用 | At5g01920 | 拟南芥 | [ | |
促进果实成熟 | MTA, MTB, ALKBH2 | 草莓,番茄 | [ | |
影响光形态建成 | CRY1, FIP37 | 拟南芥 | [ | |
刺激器官发生 | ECT2, ECT3, ECT4 | 拟南芥 | [ | |
增强根系生长 分蘖芽形成 | FTO | 水稻,马铃薯 | [ | |
调控花期 | ALKBH10B | 拟南芥 | [ | |
m1A | 调节叶片发育 | PhTRMT61A | 矮牵牛 | [ |
m5C | 调节光合作用 叶绿体和质体发育 | TRM4B | 拟南芥 | [ |
影响根系发育 | AtTRM4a, AtTRM4b | 拟南芥 | [ | |
调节叶片发育 | PhNop2, ALYREF | 矮牵牛 | [ | |
ac4C | 调节种子发育 影响叶生长 | OsNAT10, AtNAT10a, AtNAT10b | 拟南芥,水稻 | [ |
促进果实成熟 | Solyc02g036350.3, Solyc06g053710.3等 | 番茄 | [ |
修饰类型 Type of modification | 胁迫类型 Type of stress | 蛋白/基因 Protein/ Gene | 物种 Species | 参考文献 Reference |
---|---|---|---|---|
m6A | 干旱胁迫 | MdMTA | 苹果 | [ |
HrALKBH10B, HrALKBH10C, HrALKBH10D | 沙棘 | [ | ||
低温胁迫 | MTA | 拟南芥 | [ | |
强光胁迫 | VIR | 拟南芥 | [ | |
生物胁迫 | OsAGO18, OsSLRL1, MTA, HAKAI, NbECT 2A/B/C, ALKBH10B | 水稻、本氏烟草、番茄、拟南芥 | [ | |
m1A | 低温胁迫 | At2g45730, At5g14600 | 拟南芥 | [ |
盐胁迫 | LOC_Os04g02150等 | 水稻 | ||
m7G | 低温胁迫 盐胁迫 | At5g24840, At1g03110, LOC_Os06g12990等 | 拟南芥 水稻 | [ |
m5C | 氧化胁迫 | TRM4B | 拟南芥 | [ |
Table 2 Function of RNA methylation and acetylation modifications in stress response
修饰类型 Type of modification | 胁迫类型 Type of stress | 蛋白/基因 Protein/ Gene | 物种 Species | 参考文献 Reference |
---|---|---|---|---|
m6A | 干旱胁迫 | MdMTA | 苹果 | [ |
HrALKBH10B, HrALKBH10C, HrALKBH10D | 沙棘 | [ | ||
低温胁迫 | MTA | 拟南芥 | [ | |
强光胁迫 | VIR | 拟南芥 | [ | |
生物胁迫 | OsAGO18, OsSLRL1, MTA, HAKAI, NbECT 2A/B/C, ALKBH10B | 水稻、本氏烟草、番茄、拟南芥 | [ | |
m1A | 低温胁迫 | At2g45730, At5g14600 | 拟南芥 | [ |
盐胁迫 | LOC_Os04g02150等 | 水稻 | ||
m7G | 低温胁迫 盐胁迫 | At5g24840, At1g03110, LOC_Os06g12990等 | 拟南芥 水稻 | [ |
m5C | 氧化胁迫 | TRM4B | 拟南芥 | [ |
[1] | Waddington CH. The epigenotype[J]. Endeavour, 1942, 1: 18-20. |
[2] |
Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography[J]. J Biol Chem, 1948, 175(1): 315-332.
pmid: 18873306 |
[3] | Zhang L, Xu XN, Su XL. Modifications of noncoding RNAs in cancer and their therapeutic implications[J]. Cell Signal, 2023, 108: 110726. |
[4] | Liu YB, Liu SZ, Yan L, et al. Contribution of m5C RNA modification-related genes to prognosis and immunotherapy prediction in patients with ovarian cancer[J]. Mediators Inflamm, 2023, 2023: 1400267. |
[5] |
Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells[J]. Proc Natl Acad Sci USA, 1974, 71(10): 3971-3975.
doi: 10.1073/pnas.71.10.3971 pmid: 4372599 |
[6] | Zhong SL, Li HY, Bodi Z, et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor[J]. Plant Cell, 2008, 20(5): 1278-1288. |
[7] |
Nichols JL, Welder L. A modified nucleotide in the poly(A)tract of maize RNA[J]. Biochim Biophys Acta, 1981, 652(1): 99-108.
pmid: 6163465 |
[8] |
Kennedy TD, Lane BG. Wheat embryo ribonucleates. XIII. Methyl-substituted nucleoside constituents and 5'-terminal dinucleotide sequences in bulk poly(AR)-rich RNA from imbibing wheat embryos[J]. Can J Biochem, 1979, 57(6): 927-931.
pmid: 476526 |
[9] | Jiang XL, Liu BY, Nie Z, et al. The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 74. |
[10] |
Ozanick S, Krecic A, Andersland J, et al. The bipartite structure of the tRNA m1A58 methyltransferase from S. cerevisiae is conserved in humans[J]. RNA, 2005, 11(8): 1281-1290.
pmid: 16043508 |
[11] |
Chujo T, Suzuki T. Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs[J]. RNA, 2012, 18(12): 2269-2276.
doi: 10.1261/rna.035600.112 pmid: 23097428 |
[12] | Sprinzl M, Vassilenko KS. Compilation of tRNA sequences and sequences of tRNA genes[J]. Nucleic Acids Res, 2005, 33(Database issue): D139-D140. |
[13] |
Suzuki T, Yashiro Y, Kikuchi I, et al. Complete chemical structures of human mitochondrial tRNAs[J]. Nat Commun, 2020, 11(1): 4269.
doi: 10.1038/s41467-020-18068-6 pmid: 32859890 |
[14] | Roovers M, Kaminska KH, Tkaczuk KL, et al. The YqfN protein of Bacillus subtilis is the tRNA: m1A22 methyltransferase(TrmK)[J]. Nucleic Acids Res, 2008, 36(10): 3252-3262. |
[15] |
Grosjean H, Auxilien S, Constantinesco F, et al. Enzymatic conversion of adenosine to inosine and to N1-methylinosine in transfer RNAs: a review[J]. Biochimie, 1996, 78(6): 488-501.
pmid: 8915538 |
[16] |
Sloan KE, Warda AS, Sharma S, et al. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function[J]. RNA Biol, 2017, 14(9): 1138-1152.
doi: 10.1080/15476286.2016.1259781 pmid: 27911188 |
[17] | Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, et al. The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA[J]. Nature, 2016, 530(7591): 441-446. |
[18] | Li XY, Xiong XS, Wang K, et al. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome[J]. Nat Chem Biol, 2016, 12: 311-316. |
[19] |
Squires JE, Preiss T. Function and detection of 5-methylcytosine in eukaryotic RNA[J]. Epigenomics, 2010, 2(5): 709-715.
doi: 10.2217/epi.10.47 pmid: 22122054 |
[20] |
Motorin Y, Helm M. tRNA stabilization by modified nucleotides[J]. Biochemistry, 2010, 49(24): 4934-4944.
doi: 10.1021/bi100408z pmid: 20459084 |
[21] |
Gigova A, Duggimpudi S, Pollex T, et al. A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability[J]. RNA, 2014, 20(10): 1632-1644.
doi: 10.1261/rna.043398.113 pmid: 25125595 |
[22] | David R, Burgess A, Parker B, et al. Transcriptome-wide mapping of RNA 5-methylcytosine in Arabidopsis mRNAs and noncoding RNAs[J]. Plant Cell, 2017, 29(3): 445-460. |
[23] | Cui XA, Liang Z, Shen LS, et al. 5-methylcytosine RNA methylation in Arabidopsis thaliana[J]. Mol Plant, 2017, 10(11): 1387-1399. |
[24] |
Cowling VH. Regulation of mRNA cap methylation[J]. Biochem J, 2009, 425(2): 295-302.
doi: 10.1042/BJ20091352 pmid: 20025612 |
[25] | Chen C, Chao YH, Zhang CC, et al. TROP2 translation mediated by dual m6A/m7G RNA modifications promotes bladder cancer development[J]. Cancer Lett, 2023, 566: 216246. |
[26] |
Deng K, Li JX, Yang R, et al. Identification and validation of a novel prognostic model for gastric cancer based on m7G-related genes[J]. Transl Cancer Res, 2023, 12(7): 1836-1851.
doi: 10.21037/tcr-22-2614 pmid: 37588749 |
[27] | Shi M, Zhu SS, Sun LY, et al. Transcriptome-wide dynamics of m7G-related LncRNAs during the progression from HBV infection to hepatocellular carcinoma[J]. Front Biosci(Landmark Ed), 2023, 28(12): 339. |
[28] | Létoquart J, Huvelle E, Wacheul L, et al. Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes[J]. Proc Natl Acad Sci USA, 2014, 111(51): E5518-E5526. |
[29] |
Zhang LS, Liu C, Ma HH, et al. Transcriptome-wide mapping of internal N7-methylguanosine methylome in mammalian mRNA[J]. Mol Cell, 2019, 74(6): 1304-1316.e8.
doi: S1097-2765(19)30265-5 pmid: 31031084 |
[30] |
Oliva R, Cavallo L, Tramontano A. Accurate energies of hydrogen bonded nucleic acid base pairs and triplets in tRNA tertiary interactions[J]. Nucleic Acids Res, 2006, 34(3): 865-879.
pmid: 16461956 |
[31] |
Kowalski S, Yamane T, Fresco JR. Nucleotide sequence of the “denaturable” leucine transfer RNA from yeast[J]. Science, 1971, 172(3981): 385-387.
pmid: 4927676 |
[32] | Tardu M, Jones JD, Kennedy RT, et al. Identification and quantification of modified nucleosides in Saccharomyces cerevisiae mRNAs[J]. ACS Chem Biol, 2019, 14(7): 1403-1409. |
[33] | Ito S, Akamatsu Y, Noma A, et al. A single acetylation of 18 S rRNA is essential for biogenesis of the small ribosomal subunit in Saccharomyces cerevisiae[J]. J Biol Chem, 2014, 289(38): 26201-26212. |
[34] |
Taniguchi T, Miyauchi K, Sakaguchi Y, et al. Acetate-dependent tRNA acetylation required for decoding fidelity in protein synthesis[J]. Nat Chem Biol, 2018, 14(11): 1010-1020.
doi: 10.1038/s41589-018-0119-z pmid: 30150682 |
[35] |
Orita I, Futatsuishi R, Adachi K, et al. Random mutagenesis of a hyperthermophilic archaeon identified tRNA modifications associated with cellular hyperthermotolerance[J]. Nucleic Acids Res, 2019, 47(4): 1964-1976.
doi: 10.1093/nar/gky1313 pmid: 30605516 |
[36] |
Arango D, Sturgill D, Alhusaini N, et al. Acetylation of cytidine in mRNA promotes translation efficiency[J]. Cell, 2018, 175(7): 1872-1886.e24.
doi: S0092-8674(18)31383-7 pmid: 30449621 |
[37] | Parthasarathy R, Ginell SL, De NC, et al. Conformation of N4-acetylcytidine, a modified nucleoside of tRNA, and stereochemistry of codon-anticodon interaction[J]. Biochem Biophys Res Commun, 1978, 83(2): 657-663. |
[38] | Knuckles P, Lence T, Haussmann IU, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)D[J]. Genes Dev, 2018, 32(5-6): 415-429. |
[39] | Patil DP, Chen CK, Pickering BF, et al. M(6)a RNA methylation promotes XIST-mediated transcriptional repression[J]. Nature, 2016, 537(7620): 369-373. |
[40] |
Pendleton KE, Chen BB, Liu KQ, et al. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention[J]. Cell, 2017, 169(5): 824-835.e14.
doi: S0092-8674(17)30530-5 pmid: 28525753 |
[41] |
Jia GF, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887.
doi: 10.1038/nchembio.687 pmid: 22002720 |
[42] |
Zheng GQ, Dahl JA, Niu YM, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29.
doi: 10.1016/j.molcel.2012.10.015 pmid: 23177736 |
[43] |
Xu C, Wang X, Liu K, et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain[J]. Nat Chem Biol, 2014, 10: 927-929.
doi: 10.1038/nchembio.1654 pmid: 25242552 |
[44] | Liu N, Dai Q, Zheng GQ, et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015, 518(7540): 560-564. |
[45] |
Liu N, Zhou KI, Parisien M, et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein[J]. Nucleic Acids Res, 2017, 45(10): 6051-6063.
doi: 10.1093/nar/gkx141 pmid: 28334903 |
[46] |
Alarcón CR, Goodarzi H, Lee H, et al. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events[J]. Cell, 2015, 162(6): 1299-1308.
doi: 10.1016/j.cell.2015.08.011 pmid: 26321680 |
[47] | Huang HL, Weng HY, Sun WJ, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20(3): 285-295. |
[48] |
Edupuganti RR, Geiger S, Lindeboom RGH, et al. N6-methyladenosine(m6A)recruits and repels proteins to regulate mRNA homeostasis[J]. Nat Struct Mol Biol, 2017, 24(10): 870-878.
doi: 10.1038/nsmb.3462 pmid: 28869609 |
[49] |
Anderson J, Phan L, Hinnebusch AG. The Gcd10p/Gcd14p complex is the essential two-subunit tRNA(1-methyladenosine)methyltransferase of Saccharomyces cerevisiae[J]. Proc Natl Acad Sci USA, 2000, 97(10): 5173-5178.
pmid: 10779558 |
[50] | Kadaba S, Krueger A, Trice T, et al. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae[J]. Genes Dev, 2004, 18(11): 1227-1240. |
[51] |
Howell NW, Jora M, Jepson BF, et al. Distinct substrate specificities of the human tRNA methyltransferases TRMT10A and TRMT10B[J]. RNA, 2019, 25(10): 1366-1376.
doi: 10.1261/rna.072090.119 pmid: 31292261 |
[52] | Xu BF, Liu DY, Wang ZR, et al. Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family[J]. Cell Mol Life Sci, 2021, 78(1): 129-141. |
[53] |
Motorin Y, Grosjean H. Multisite-specific tRNA: m5C-methyltransferase(Trm4)in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme[J]. RNA, 1999, 5(8): 1105-1118.
pmid: 10445884 |
[54] | Gu WF, Hurto RL, Hopper AK, et al. Depletion of Saccharomyces cerevisiae tRNA(His)guanylyltransferase Thg1p leads to uncharged tRNAHis with additional m(5)C[J]. Mol Cell Biol, 2005, 25(18): 8191-8201. |
[55] |
Reid R, Greene PJ, Santi DV. Exposition of a family of RNA m5C methyltransferases from searching genomic and proteomic sequences[J]. Nucleic Acids Res, 1999, 27(15): 3138-3145.
pmid: 10454610 |
[56] |
Sharma S, Yang J, Watzinger P, et al. Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively[J]. Nucleic Acids Res, 2013, 41(19): 9062-9076.
doi: 10.1093/nar/gkt679 pmid: 23913415 |
[57] | Schaefer M, Pollex T, Hanna K, et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage[J]. Genes Dev, 2010, 24(15): 1590-1595. |
[58] |
Yang X, Yang Y, Sun BF, et al. 5-methylcytosine promotes mRNA export—NSUN2 as the methyltransferase and ALYREF as an m5C reader[J]. Cell Res, 2017, 27(5): 606-625.
doi: 10.1038/cr.2017.55 pmid: 28418038 |
[59] |
Motorin Y, Lyko F, Helm M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions[J]. Nucleic Acids Res, 2010, 38(5): 1415-1430.
doi: 10.1093/nar/gkp1117 pmid: 20007150 |
[60] | Frye M, Watt FM. The RNA methyltransferase Misu(NSun2)mediates Myc-induced proliferation and is upregulated in tumors[J]. Curr Biol, 2006, 16(10): 971-981. |
[61] | Van Haute L, Dietmann S, Kremer L, et al. Deficient methylation and formylation of mt-tRNAMet wobble cytosine in a patient carrying mutations in NSUN3[J]. Nat Commun, 2016, 7: 12039. |
[62] |
Boriack-Sjodin PA, Ribich S, Copeland RA. RNA-modifying proteins as anticancer drug targets[J]. Nat Rev Drug Discov, 2018, 17(6): 435-453.
doi: 10.1038/nrd.2018.71 pmid: 29773918 |
[63] |
Schosserer M, Minois N, Angerer TB, et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan[J]. Nat Commun, 2015, 6: 6158.
doi: 10.1038/ncomms7158 pmid: 25635753 |
[64] |
Harris T, Marquez B, Suarez S, et al. Sperm motility defects and infertility in male mice with a mutation in Nsun7, a member of the Sun domain-containing family of putative RNA methyltransferases[J]. Biol Reprod, 2007, 77(2): 376-382.
pmid: 17442852 |
[65] | Zhou Z, Luo MJ, Straesser K, et al. The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans[J]. Nature, 2000, 407(6802): 401-405. |
[66] |
Alexandrov A, Martzen MR, Phizicky EM. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA[J]. RNA, 2002, 8(10): 1253-1266.
pmid: 12403464 |
[67] |
Leulliot N, Chaillet M, Durand D, et al. Structure of the yeast tRNA m7G methylation complex[J]. Structure, 2008, 16(1): 52-61.
doi: 10.1016/j.str.2007.10.025 pmid: 18184583 |
[68] |
Trotman JB, Giltmier AJ, Mukherjee C, et al. RNA guanine-7 methyltransferase catalyzes the methylation of cytoplasmically recapped RNAs[J]. Nucleic Acids Res, 2017, 45(18): 10726-10739.
doi: 10.1093/nar/gkx801 pmid: 28981715 |
[69] |
Grasso L, Suska O, Davidson L, et al. mRNA cap methylation in pluripotency and differentiation[J]. Cell Rep, 2016, 16(5): 1352-1365.
doi: S2211-1247(16)30858-0 pmid: 27452456 |
[70] |
Haag S, Kretschmer J, Bohnsack MT. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA[J]. RNA, 2015, 21(2): 180-187.
doi: 10.1261/rna.047910.114 pmid: 25525153 |
[71] |
Shen Q, Zheng XZ, McNutt MA, et al. NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules[J]. Exp Cell Res, 2009, 315(10): 1653-1667.
doi: 10.1016/j.yexcr.2009.03.007 pmid: 19303003 |
[72] |
Liu XF, Tan YQ, Zhang CF, et al. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2[J]. EMBO Rep, 2016, 17(3): 349-366.
doi: 10.15252/embr.201540505 pmid: 26882543 |
[73] |
张雪, 汤华. 乙酰转移酶10通过介导盘状蛋白结构域受体1mRNA的ac4C乙酰化修饰促进宫颈癌细胞的恶性行为[J]. 中国生物化学与分子生物学报, 2022, 38(5): 603-613.
doi: 10.13865/j.cnki.cjbmb.2022.04.0044 |
Zhang X, Tang H. NAT10 promotes cervical cancer cell malignant behavior via N4-acetylcytidine modification of DDR1 mRNA[J]. Chin J Biochem Mol Biol, 2022, 38(5): 603-613.
doi: 10.13865/j.cnki.cjbmb.2022.04.0044 |
|
[74] |
Hao HJ, Liu WC, Miao YJ, et al. N4-acetylcytidine regulates the replication and pathogenicity of enterovirus 71[J]. Nucleic Acids Res, 2022, 50(16): 9339-9354.
doi: 10.1093/nar/gkac675 pmid: 35971620 |
[75] | Wang K, Zhou LY, Liu F, et al. PIWI-interacting RNA HAAPIR regulates cardiomyocyte death after myocardial infarction by promoting NAT10-mediated ac4 C acetylation of tfec mRNA[J]. Adv Sci, 2022, 9(8): e2106058. |
[76] | Sheikh AH, Tabassum N, Rawat A, et al. m6A RNA methylation counteracts dark-induced leaf senescence in Arabidopsis[J]. Plant Physiol, 2024, 194(4): 2663-2678. |
[77] | Zhang Y, Wang JH, Ma WJ, et al. Transcriptome-wide m6A methylation in natural yellow leaf of Catalpa fargesii[J]. Front Plant Sci, 2023, 14: 1167789. |
[78] | Amara U, Hu JZ, Cai J, et al. FLK is an mRNA m6A reader that regulates floral transition by modulating the stability and splicing of FLC in Arabidopsis[J]. Mol Plant, 2023, 16(5): 919-929. |
[79] | Luo GZ, MacQueen A, Zheng GQ, et al. Unique features of the m6A methylome in Arabidopsis thaliana[J]. Nat Commun, 2014, 5: 5630. |
[80] | Zhou LL, Tang RK, Li XJ, et al. N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner[J]. Genome Biol, 2021, 22(1): 168. |
[81] | Yang JX, Li L, Li X, et al. The blue light receptor CRY1 interacts with FIP37 to promote N6-methyladenosine RNA modification and photomorphogenesis in Arabidopsis[J]. New Phytol, 2023, 237(3): 840-854. |
[82] | Arribas-Hernández L, Simonini S, Hansen MH, et al. Recurrent requirement for the m6A-ECT2/ECT3/ECT4 axis in the control of cell proliferation during plant organogenesis[J]. Development, 2020, 147(14): dev189134. |
[83] |
Yu Q, Liu S, Yu L, et al. RNA demethylation increases the yield and biomass of rice and potato plants in field trials[J]. Nat Biotechnol, 2021, 39(12): 1581-1588.
doi: 10.1038/s41587-021-00982-9 pmid: 34294912 |
[84] | Duan HC, Wei LH, Zhang C, et al. ALKBH10B is an RNA N6-methyladenosine demethylase affecting Arabidopsis floral transition[J]. Plant Cell, 2017, 29(12): 2995-3011. |
[85] | Zhou LL, Tian SP, Qin GZ. RNA methylomes reveal the m6A-mediated regulation of DNA demethylase gene SlDML2 in tomato fruit ripening[J]. Genome Biol, 2019, 20(1): 156. |
[86] | Yang WY, Meng J, Liu JX, et al. The N1-methyladenosine methylome of Petunia mRNA[J]. Plant Physiol, 2020, 183(4): 1710-1724. |
[87] | Zhang DL, Guo WJ, Wang T, et al. RNA 5-methylcytosine modification regulates vegetative development associated with H3K27 trimethylation in Arabidopsis[J]. Adv Sci, 2022, 10(1): e2204885. |
[88] | Wang YM, Pang CQ, Li XK, et al. Identification of tRNA nucleoside modification genes critical for stress response and development in rice and Arabidopsis[J]. BMC Plant Biol, 2017, 17(1): 261. |
[89] | 覃晓春. 矮牵牛RNA m5C修饰相关蛋白功能初步探索[D]. 广州: 华南农业大学, 2020. |
Qin XC. A preliminary exploration of the RNA m5C modification-related proteins functions in Petunia hybrida[D]. Guangzhou: South China Agricultural University, 2020. | |
[90] | Li B, Li DH, Cai LJ, et al. Transcriptome-wide profiling of RNA N4-cytidine acetylation in Arabidopsis thaliana and Oryza sativa[J]. Mol Plant, 2023, 16(6): 1082-1098. |
[91] | Wang WL, Liu HJ, Wang FF, et al. N4-acetylation of cytidine in mRNA plays essential roles in plants[J]. Plant Cell, 2023, 35(10): 3739-3756. |
[92] | Ma LL, Zheng YY, Zhou ZJ, et al. Dissection of mRNA ac4C acetylation modifications in AC and Nr fruits: insights into the regulation of fruit ripening by ethylene[J]. Mol Hortic, 2024, 4(1): 5. |
[93] | Hou N, Li CS, He JQ, et al. MdMTA-mediated m6 A modification enhances drought tolerance by promoting mRNA stability and translation efficiency of genes involved in lignin deposition and oxidative stress[J]. New Phytol, 2022, 234(4): 1294-1314. |
[94] | Zhang GY, Lv ZR, Diao SF, et al. Unique features of the m6A methylome and its response to drought stress in sea buckthorn(Hippophae rhamnoides Linn.)[J]. RNA Biol, 2021, 18(sup2): 794-803. |
[95] | Wang S, Wang HY, Xu ZH, et al. m6A mRNA modification promotes chilling tolerance and modulates gene translation efficiency in Arabidopsis[J]. Plant Physiol, 2023, 192(2): 1466-1482. |
[96] |
Zhang M, Zeng YP, Peng R, et al. N6-methyladenosine RNA modification regulates photosynthesis during photodamage in plants[J]. Nat Commun, 2022, 13(1): 7441.
doi: 10.1038/s41467-022-35146-z pmid: 36460653 |
[97] |
Zhang K, Zhuang XJ, Dong ZZ, et al. The dynamics of N6-methyladenine RNA modification in interactions between rice and plant viruses[J]. Genome Biol, 2021, 22(1): 189.
doi: 10.1186/s13059-021-02410-2 pmid: 34167554 |
[98] | He H, Ge LH, Chen YL, et al. m6A modification of plant virus enables host recognition by NMD factors in plants[J]. Sci China Life Sci, 2024, 67(1): 161-174. |
[99] | Prall W, Sheikh AH, Bazin J, et al. Pathogen-induced m6A dynamics affect plant immunity[J]. Plant Cell, 2023, 35(11): 4155-4172. |
[1] | SHEN Peng, GAO Ya-Bin, DING Hong. Identification and Expression Analysis of SAT Gene Family in Potato(Solanum tuberosum L.) [J]. Biotechnology Bulletin, 2024, 40(9): 64-73. |
[2] | HOU Zhi-han, HAO Nan, LI Jia-qi, ZHAO Bin, LIU Ying-chao. Roles of RNA m1A and m5C Methylation Modifications in the Fumonisin Biosynthesis of Fusarium verticillioides [J]. Biotechnology Bulletin, 2024, 40(9): 282-290. |
[3] | MAN Quan-cai, MENG Zi-nuo, LI Wei, CAI Xin-ru, SU Run-dong, FU Chang-qing, GAO Shun-juan, CUI Jiang-hui. Identification and Expression Analysis of AQP Gene Family in Potato [J]. Biotechnology Bulletin, 2024, 40(9): 51-63. |
[4] | LI Yong-hui, BAO Xing-xing, DUAN Yi-ke, ZHAO Yun-xia, YU Xiang-li, CHEN Yao, ZHANG Yan-zhao. Genome-wide Identification and Expression Features Analysis of the bZIP Family in Rhododendron henanense subsp. lingbaoense [J]. Biotechnology Bulletin, 2024, 40(8): 186-198. |
[5] | CUI Yuan-yuan, WANG Zhao-yi, BAI Shuang-yu, REN Yu-zhao, DOU Fei-fei, LIU Cai-xia, LIU Feng-lou, WANG Zhang-jun, LI Qing-feng. Genome-wide Identification of Non-specific Phospholipase C Gene Family in Hordeum vulgare L. and Stress Expression Analysis at Seedling Stage [J]. Biotechnology Bulletin, 2024, 40(8): 74-82. |
[6] | LIU Dan-dan, WANG Lei-gang, SUN Ming-hui, JIAO Xiao-yu, WU Qiong, WANG Wen-jie. Genome-wide Identification and Expression Pattern Profiling of the Trehalose-6-phosphate Synthase(TPS)Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2024, 40(8): 152-163. |
[7] | YU Niu, LIU Fan, YANG Jin-chang. Cloning of SgTPS7 in Sindora glabra and Its Function in Terpene Synthesis and Abiotic Stress [J]. Biotechnology Bulletin, 2024, 40(8): 164-173. |
[8] | LU Xi, YUAN Yue, LI Dan, ZHANG Peng. Studies on the Regulation of MBD1-induced Expression by Dox in the Tet-On System [J]. Biotechnology Bulletin, 2024, 40(8): 47-52. |
[9] | WU Ding-jie, CHEN Ying-ying, XU Jing, LIU Yuan, ZHANG Hang, LI Rui-li. Research Progress in Plant Gibberellin Oxidase and Its Functions [J]. Biotechnology Bulletin, 2024, 40(7): 43-54. |
[10] | HU Ya-dan, WU Guo-qiang, LIU Chen, WEI Ming. Roles of MYB Transcription Factor in Regulating the Responses of Plants to Stress [J]. Biotechnology Bulletin, 2024, 40(6): 5-22. |
[11] | WANG Li-chao, LI Huan, SHENG Ruo-cheng, LI Min, CHEN Feng-mao. Role of Acetylation in the Pathogenic Process of Plant Pathogens [J]. Biotechnology Bulletin, 2024, 40(5): 1-12. |
[12] | YUAN Ming-bo, YE Guo-hua, YANG Dan, SONG Dong-xue. Research Progress in DNA Methylation Sequencing Technology [J]. Biotechnology Bulletin, 2024, 40(5): 58-65. |
[13] | DU Bing-shuai, ZOU Xin-hui, WANG Zi-hao, ZHANG Xin-yuan, CAO Yi-bo, ZHANG Ling-yun. Genome-wide Identification and Expression Analysis of the SWEET Gene Family in Camellia oleifera [J]. Biotechnology Bulletin, 2024, 40(5): 179-190. |
[14] | GUO Hui-yan, DONG Xue, AN Meng-nan, XIA Zi-hao, WU Yuan-hua. Research Progress in the Functions of Key Enzymes of Ubiquitination Modification in Plant Stress Responses [J]. Biotechnology Bulletin, 2024, 40(4): 1-11. |
[15] | JIANG Lin-qi, ZHAO Jia-ying, ZHENG Fei-xiong, YAO Xin-yi, LI Xiao-xian, YU Zhen-ming. Identification and Expression Analysis of 14-3-3 Gene Family in Dendrobium officinale [J]. Biotechnology Bulletin, 2024, 40(3): 229-241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||