Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (12): 102-112.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0418
Previous Articles Next Articles
ZHANG Shuai-bo(
), YIN Jin-peng, WANG Ji-qing, XIAO Huai-juan(
), LI Meng(
)
Received:2024-05-04
Online:2024-12-26
Published:2025-01-15
Contact:
XIAO Huai-juan, LI Meng
E-mail:shuaibozhang2023@163.com;xhj234@126.com;limengscience@163.com
ZHANG Shuai-bo, YIN Jin-peng, WANG Ji-qing, XIAO Huai-juan, LI Meng. Identification of the HXK Gene Family in Cucumis melo and Their Expression Analysis under Abiotic Stresses[J]. Biotechnology Bulletin, 2024, 40(12): 102-112.
| 基因Gene | 正向引物序列Forward primer sequence(5'-3') | 反向引物序列Reverse primer sequence(5'-3') |
|---|---|---|
| CmHXK1 | GTTGGACAAGATGTGGTAGG | CCAGTTCCTAGAATCACAGC |
| CmHXK2 CmHXK3 CmHXK4 CmHXK5 CmHXK6 | CAGGTGGTTGATGCTATGG GACAGATTCCACCTTTCTCC ATGGAGGAGAGTAGTTAGGG TTGCTGCTGTGATATTAGGC ATGGTTGATGATACTGTTGGG | CTTCAAAGTAAGAGACCTCTGG CAAGCAACAACATCTTTCCC CAGGGAGATTATCAACGTAGG CTTCTTCAGCCATCTTGACC GACTCTATATAGGCAGCATTGG |
| CmActin7 | GTGATGGTGTGAGTCACACTGTTC | ACGACCAGCAAGGTCCAAAC |
Table 1 Sequences of primers used for RT-qPCR in this study
| 基因Gene | 正向引物序列Forward primer sequence(5'-3') | 反向引物序列Reverse primer sequence(5'-3') |
|---|---|---|
| CmHXK1 | GTTGGACAAGATGTGGTAGG | CCAGTTCCTAGAATCACAGC |
| CmHXK2 CmHXK3 CmHXK4 CmHXK5 CmHXK6 | CAGGTGGTTGATGCTATGG GACAGATTCCACCTTTCTCC ATGGAGGAGAGTAGTTAGGG TTGCTGCTGTGATATTAGGC ATGGTTGATGATACTGTTGGG | CTTCAAAGTAAGAGACCTCTGG CAAGCAACAACATCTTTCCC CAGGGAGATTATCAACGTAGG CTTCTTCAGCCATCTTGACC GACTCTATATAGGCAGCATTGG |
| CmActin7 | GTGATGGTGTGAGTCACACTGTTC | ACGACCAGCAAGGTCCAAAC |
Fig. 3 Amino acid sequence multiple alignment of the CmHXK gene family in C. melo Different shadows show different homology, black:100%; pink: ≥75%; blue: ≥50%
| 功能Function | 元件Element | CmHXK1 | CmHXK2 | CmHXK3 | CmHXK4 | CmHXK5 | CmHXK6 |
|---|---|---|---|---|---|---|---|
| 脱落酸ABA | ABRE | 0 | 0 | 0 | 3 | 0 | 3 |
| 生长素Auxin | TGA-element | 1 | 1 | 0 | 0 | 1 | 0 |
| 乙烯ETH | ERE | 1 | 0 | 2 | 6 | 6 | 3 |
| 赤霉素GA | P-box | 0 | 1 | 1 | 0 | 0 | 1 |
| w box | 1 | 0 | 0 | 2 | 1 | 0 | |
| 茉莉酸甲酯MeJa | CGTCA-motif | 1 | 2 | 0 | 0 | 1 | 2 |
| TGACG-motif | 1 | 2 | 0 | 0 | 2 | 2 | |
| 水杨酸SA | As-1 | 1 | 1 | 0 | 1 | 1 | 0 |
| TCA | 1 | 0 | 1 | 0 | 0 | 1 | |
| TCA-element | 2 | 0 | 1 | 0 | 0 | 0 | |
| DRE | 0 | 0 | 0 | 3 | 1 | 0 | |
| 非生物胁迫Abiotic stresses | LTR | 0 | 0 | 0 | 0 | 1 | 0 |
| STRE | 2 | 1 | 0 | 3 | 1 | 2 | |
| WRE3 | 1 | 0 | 1 | 1 | 0 | 0 | |
| WUN-motif | 2 | 2 | 0 | 0 | 0 | 0 | |
| TC-rich repeats | 0 | 0 | 0 | 0 | 1 | 0 | |
| 光响应Light | 3-AFlbinding site | 0 | 0 | 0 | 1 | 0 | 1 |
| AE-box | 0 | 0 | 0 | 0 | 1 | 2 | |
| ATCT-motif | 1 | 0 | 0 | 0 | 0 | 0 | |
| Box 4 | 3 | 3 | 2 | 3 | 2 | 2 | |
| Box II | 0 | 1 | 0 | 0 | 0 | 0 | |
| chs-CMAla | 0 | 0 | 0 | 1 | 0 | 0 | |
| GA-motif | 0 | 0 | 0 | 0 | 0 | 1 | |
| GATA-motif | 1 | 1 | 0 | 2 | 1 | 1 | |
| G-Box | 0 | 0 | 0 | 1 | 0 | 2 | |
| G-box | 0 | 1 | 0 | 2 | 1 | 2 | |
| GT1-motif | 2 | 0 | 0 | 2 | 1 | 0 | |
| I-box | 1 | 0 | 0 | 0 | 2 | 0 | |
| Sp1 | 0 | 0 | 1 | 0 | 0 | 0 | |
| TCCC-motif | 0 | 3 | 0 | 0 | 0 | 0 | |
| TCT-motif | 1 | 1 | 3 | 0 | 1 | 0 |
Table 2 Analysis of cis-acting regulatory elements in the promoter of CmHXKs genes
| 功能Function | 元件Element | CmHXK1 | CmHXK2 | CmHXK3 | CmHXK4 | CmHXK5 | CmHXK6 |
|---|---|---|---|---|---|---|---|
| 脱落酸ABA | ABRE | 0 | 0 | 0 | 3 | 0 | 3 |
| 生长素Auxin | TGA-element | 1 | 1 | 0 | 0 | 1 | 0 |
| 乙烯ETH | ERE | 1 | 0 | 2 | 6 | 6 | 3 |
| 赤霉素GA | P-box | 0 | 1 | 1 | 0 | 0 | 1 |
| w box | 1 | 0 | 0 | 2 | 1 | 0 | |
| 茉莉酸甲酯MeJa | CGTCA-motif | 1 | 2 | 0 | 0 | 1 | 2 |
| TGACG-motif | 1 | 2 | 0 | 0 | 2 | 2 | |
| 水杨酸SA | As-1 | 1 | 1 | 0 | 1 | 1 | 0 |
| TCA | 1 | 0 | 1 | 0 | 0 | 1 | |
| TCA-element | 2 | 0 | 1 | 0 | 0 | 0 | |
| DRE | 0 | 0 | 0 | 3 | 1 | 0 | |
| 非生物胁迫Abiotic stresses | LTR | 0 | 0 | 0 | 0 | 1 | 0 |
| STRE | 2 | 1 | 0 | 3 | 1 | 2 | |
| WRE3 | 1 | 0 | 1 | 1 | 0 | 0 | |
| WUN-motif | 2 | 2 | 0 | 0 | 0 | 0 | |
| TC-rich repeats | 0 | 0 | 0 | 0 | 1 | 0 | |
| 光响应Light | 3-AFlbinding site | 0 | 0 | 0 | 1 | 0 | 1 |
| AE-box | 0 | 0 | 0 | 0 | 1 | 2 | |
| ATCT-motif | 1 | 0 | 0 | 0 | 0 | 0 | |
| Box 4 | 3 | 3 | 2 | 3 | 2 | 2 | |
| Box II | 0 | 1 | 0 | 0 | 0 | 0 | |
| chs-CMAla | 0 | 0 | 0 | 1 | 0 | 0 | |
| GA-motif | 0 | 0 | 0 | 0 | 0 | 1 | |
| GATA-motif | 1 | 1 | 0 | 2 | 1 | 1 | |
| G-Box | 0 | 0 | 0 | 1 | 0 | 2 | |
| G-box | 0 | 1 | 0 | 2 | 1 | 2 | |
| GT1-motif | 2 | 0 | 0 | 2 | 1 | 0 | |
| I-box | 1 | 0 | 0 | 0 | 2 | 0 | |
| Sp1 | 0 | 0 | 1 | 0 | 0 | 0 | |
| TCCC-motif | 0 | 3 | 0 | 0 | 0 | 0 | |
| TCT-motif | 1 | 1 | 3 | 0 | 1 | 0 |
| 蛋白名称 Protein name | α-螺旋 α-helix/% | 延伸链 Extended strand/% | β转角 β-turn/% | 无规卷曲 Random/% |
|---|---|---|---|---|
| CmHXK1 | 47.39 | 14.06 | 5.22 | 33.33 |
| CmHXK2 | 43.00 | 15.78 | 5.52 | 35.70 |
| CmHXK3 | 44.51 | 13.57 | 4.79 | 37.13 |
| CmHXK4 | 43.46 | 13.29 | 5.49 | 37.76 |
| CmHXK5 | 47.59 | 12.85 | 5.62 | 33.94 |
| CmHXK6 | 51.52 | 12.12 | 6.4 | 29.97 |
Table 3 Secondary structure composition of CmHXKs proteins
| 蛋白名称 Protein name | α-螺旋 α-helix/% | 延伸链 Extended strand/% | β转角 β-turn/% | 无规卷曲 Random/% |
|---|---|---|---|---|
| CmHXK1 | 47.39 | 14.06 | 5.22 | 33.33 |
| CmHXK2 | 43.00 | 15.78 | 5.52 | 35.70 |
| CmHXK3 | 44.51 | 13.57 | 4.79 | 37.13 |
| CmHXK4 | 43.46 | 13.29 | 5.49 | 37.76 |
| CmHXK5 | 47.59 | 12.85 | 5.62 | 33.94 |
| CmHXK6 | 51.52 | 12.12 | 6.4 | 29.97 |
Fig. 7 Analysis of tissue expression pattern of CmHXKs family in C. melo Green: Melons with green flesh. Orange: Melons with orange flesh. DAA: Day after anthesis. Mature: Mature period
| [1] |
洪天澍, 海英, 恩和巴雅尔, 等. 甜瓜CmABCG8基因的表达特性分析[J]. 生物技术通报, 2022, 38(7): 178-185.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1117 |
| Hong TS, Hai Y, En H, et al. Analysis of expression characteristics of CmABCG8 gene in Cucumis melo L.[J]. Biotechnol Bull, 2022, 38(7): 178-185. | |
| [2] |
李猛, 吕亭辉, 邢巧娟, 等. 瓜类蔬菜耐低温性评价与调控研究进展[J]. 园艺学报, 2018, 45(9): 1761-1777.
doi: 10.16420/j.issn.0513-353x.2018-0028 |
|
Li M, Lü TH, Xing QJ, et al. Research progress on evaluation and regulation of chilling tolerance in cucurbitaceous vegetables[J]. Acta Hortic Sin, 2018, 45(9): 1761-1777.
doi: 10.16420/j.issn.0513-353x.2018-0028 |
|
| [3] |
熊韬, 闫淼, 王豪杰, 等. 盐碱胁迫对甜瓜种子萌发及幼苗生长发育的影响[J]. 新疆农业科学, 2022, 59(8): 1965-1974.
doi: 10.6048/j.issn.1001-4330.2022.08.017 |
|
Xiong T, Yan M, Wang HJ, et al. Effects of saline-alkali stress on seed germination and seedling growth of muskmelon[J]. Xinjiang Agric Sci, 2022, 59(8): 1965-1974.
doi: 10.6048/j.issn.1001-4330.2022.08.017 |
|
| [4] | Jiao F, Chen Y, Zhang DD, et al. Genome-wide characterization of soybean hexokinase genes reveals a positive role of GmHXK15 in alkali stress response[J]. Plants, 2023, 12(17): 3121. |
| [5] | 张超, 王彦杰, 付建新, 等. 高等植物己糖激酶基因研究进展[J]. 生物技术通报, 2012(4): 19-26. |
| Zhang C, Wang YJ, Fu JX, et al. Research advances in the hexokinase gene family in higher plant[J]. Biotechnol Bull, 2012(4): 19-26. | |
| [6] |
Granot D. Role of tomato hexose kinases[J]. Funct Plant Biol, 2007, 34(6): 564-570.
doi: 10.1071/FP06207 pmid: 32689384 |
| [7] | Feng J, Zhao S, Chen XM, et al. Biochemical and structural study of Arabidopsis hexokinase 1[J]. Acta Crystallogr D Biol Crystallogr, 2015, 71(Pt 2): 367-375. |
| [8] | Zhang ZB, Zhang JW, Chen YJ, et al. Isolation, structural analysis, and expression characteristics of the maize(Zea mays L.) hexokinase gene family[J]. Mol Biol Rep, 2014, 41(9): 6157-6166. |
| [9] | Cho JI, Ryoo N, Ko S, et al. Structure, expression, and functional analysis of the hexokinase gene family in rice(Oryza sativa L.)[J]. Planta, 2006, 224(3): 598-611. |
| [10] | Li J, Liu Y, Zhang JL, et al. Suppression of a hexokinase gene SlHXK1 in tomato affects fruit setting and seed quality[J]. Plant Physiol Biochem, 2023, 205: 108160. |
| [11] | Li J, Chen GP, Zhang JL, et al. Suppression of a hexokinase gene, SlHXK1, leads to accelerated leaf senescence and stunted plant growth in tomato[J]. Plant Sci, 2020, 298: 110544. |
| [12] | Zhu LC, Su J, Jin YR, et al. Genome-wide identification, molecular evolution, and expression divergence of the hexokinase gene family in apple[J]. J Integr Agric, 2021, 20(8): 2112-2125. |
| [13] |
Zhou L, Jang JC, Jones TL, et al. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant[J]. Proc Natl Acad Sci USA, 1998, 95(17): 10294-10299.
doi: 10.1073/pnas.95.17.10294 pmid: 9707641 |
| [14] |
Pego JV, Weisbeek PJ, Smeekens SC. Mannose inhibits Arabidopsis germination via a hexokinase-mediated step[J]. Plant Physiol, 1999, 119(3): 1017-1023.
pmid: 10069839 |
| [15] | Zheng YJ, Tian L, Liu HT, et al. Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries[J]. Plant Growth Regul, 2009, 58(3): 251-260. |
| [16] |
Miao HY, Wei J, Zhao YT, et al. Glucose signalling positively regulates aliphatic glucosinolate biosynthesis[J]. J Exp Bot, 2013, 64(4): 1097-1109.
doi: 10.1093/jxb/ers399 pmid: 23329848 |
| [17] |
Moore B, Zhou L, Rolland F, et al. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling[J]. Science, 2003, 300(5617): 332-336.
doi: 10.1126/science.1080585 pmid: 12690200 |
| [18] | 晁江涛, 孔英珍, 王倩, 等. MapGene2Chrom基于Perl和SVG语言绘制基因物理图谱[J]. 遗传, 2015, 37(1): 91-97. |
| Chao JT, Kong YZ, Wang Q, et al. MapGene2Chrom, a tool to draw gene physical map based on Perl and SVG languages[J]. Hereditas, 2015, 37(1): 91-97. | |
| [19] |
Wilkins MR, Gasteiger E, Bairoch A, et al. Protein identification and analysis tools in the ExPASy server[J]. Methods Mol Biol, 1999, 112: 531-552.
pmid: 10027275 |
| [20] |
Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6): 1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887 |
| [21] |
Hu B, Jin JP, Guo AY, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.
doi: 10.1093/bioinformatics/btu817 pmid: 25504850 |
| [22] | Bailey TL. Discovering novel sequence motifs with MEME[J]. Curr Protoc Bioinformatics, 2002, Chapter 2: Unit 2.4. |
| [23] | Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes[J]. Nucleic Acids Res, 2018, 46(W1): W296-W303. |
| [24] |
Lescot M, Déhais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res, 2002, 30(1): 325-327.
doi: 10.1093/nar/30.1.325 pmid: 11752327 |
| [25] | Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1): D605-D612. |
| [26] | Meyrhof O. Uber die enzymatische milchsaurebildung im muskelextrakt. III. Mitteilung: die milchsaurebildung aus den gfirfahigen hexosen[J]. Biochem. Z. 1927,(183): 176-215. |
| [27] |
Karve A, Rauh BL, Xia XX, et al. Expression and evolutionary features of the hexokinase gene family in Arabidopsis[J]. Planta, 2008, 228(3): 411-425.
doi: 10.1007/s00425-008-0746-9 pmid: 18481082 |
| [28] |
Kandel-Kfir M, Damari-Weissler H, German MA, et al. Two newly identified membrane-associated and plastidic tomato HXKs: characteristics, predicted structure and intracellular localization[J]. Planta, 2006, 224(6): 1341-1352.
doi: 10.1007/s00425-006-0318-9 pmid: 16761134 |
| [29] | Liu Y, Jiang YL, Liu XL, et al. Identification and expression analysis of hexokinases family in Saccharum spontaneum L. under drought and cold stresses[J]. Plants, 2023, 12(6): 1215. |
| [30] | Dou LL, Li ZH, Wang HQ, et al. The hexokinase gene family in cotton: genome-wide characterization and bioinformatics analysis[J]. Front Plant Sci, 2022, 13: 882587. |
| [31] | Zheng WQ, Zhang Y, Zhang Q, et al. Genome-wide identification and characterization of hexokinase genes in moso bamboo(Phyllostachys edulis)[J]. Front Plant Sci, 2020, 11: 600. |
| [32] | 刘倩倩. 玉米HXK基因家族鉴定及ZmHXK6、ZmHXK7基因提高拟南芥耐盐性的功能解析[D]. 郑州: 郑州大学, 2021. |
| Liu QQ. Identification of HXK gene family in Zea mays and functional analysis of ZmHXK6、ZmHXK7 genes to improve salt tolerance in Arabidopsis thaliana[D]. Zhengzhou: Zhengzhou University, 2021. | |
| [33] |
Wei XY, Nguyen STT, Collings DA, et al. Sucrose regulates wall ingrowth deposition in phloem parenchyma transfer cells in Arabidopsis via affecting phloem loading activity[J]. J Exp Bot, 2020, 71(16): 4690-4702.
doi: 10.1093/jxb/eraa246 pmid: 32433727 |
| [34] | Cheng W, Zhang H, Zhou X, et al. Subcellular localization of rice hexokinase(OsHXK)family members in the mesophyll protoplasts of tobacco[J]. Biol Plant, 2011, 55(1): 173-177. |
| [35] | Ding X, Li JH, Pan Y, et al. Genome-wide identification and expression analysis of the UGlcAE gene family in tomato[J]. Int J Mol Sci, 2018, 19(6): 1583. |
| [36] |
李英华, 王阔, 郑艳红, 等. 大豆GmGBP1基因启动子的光周期响应元件TCT-motif功能分析[J]. 中国油料作物学报, 2018, 40(4): 592-596.
doi: 10.7505/j.issn.1007-9084.2018.04.018 |
| Li YH, Wang K, Zheng YH, et al. TCT-motif function of photoperiod response element of soybean GmGBP1 gene promoter[J]. Chin J Oil Crop Sci, 2018, 40(4): 592-596. | |
| [37] | Saidi A, Hajibarat Z. Characterization of cis-elements in hormonal stress-responsive genes in Oryza sativa[J]. Asia Pac J Mol Biol Biotechnol, 2019: 95-102. |
| [38] |
肖玉洁, 李泽明, 易鹏飞, 等. 转录因子参与植物低温胁迫响应调控机理的研究进展[J]. 生物技术通报, 2018, 34(12):1-9.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0240 |
| Xiao YJ, Li ZM, Yi PF, et al. Research progress on response mechanism of transcription factors involved in plant cold stress[J]. Biotechnol Bull, 2018, 34(12): 1-9. | |
| [39] | 孙耀国, 蔡天润, 姬行舟, 等. 西洋梨全基因组bZIP基因家族生物信息学分析[J]. 林业与生态科学, 2021, 36(1): 24-34. |
| Sun YG, Cai TR, Ji XZ, et al. Genome-wide bioinformatics analysis of bZIP gene family in Pyrus communis[J]. For Ecol Sci, 2021, 36(1): 24-34. | |
| [40] |
Wang JF, Wang YP, Yu YT, et al. ClSnRK2.3 negatively regulates watermelon fruit ripening and sugar accumulation[J]. J Integr Plant Biol, 2023, 65(10): 2336-2348.
doi: 10.1111/jipb.13535 |
| [41] | Li M, Du QJ, Li JQ, et al. Genome-wide identification and chilling stress analysis of the NF-Y gene family in melon[J]. Int J Mol Sci, 2023, 24(8): 6934. |
| [1] | YIN Yuan, CHENG Shuang, LIU Ding-hao, DENG Xiao-xia, LI Kai-yue, WANG Jing-hong, LIN Ji-xiang. Research Progress in Exogenous Hydrogen Peroxide(H2O2)Affecting Plant Growth and Physiological Metabolism under Abiotic Stress [J]. Biotechnology Bulletin, 2025, 41(1): 1-13. |
| [2] | DU Pin-ting, WU Guo-jiang, WANG Zhen-guo, LI Yan, ZHOU Wei, ZHOU Ya-xing. Identification and Expression Analysis of CPP Gene Family in Sorghum [J]. Biotechnology Bulletin, 2025, 41(1): 132-142. |
| [3] | WU Zhi-jian, LIU Guang-yang, LIN Zhi-hao, SHENG Bin, CHEN Ge, XU Xiao-min, WANG Jun-wei, XU Dong-hui. Research Progress of Nano-regulation of Vegetable Seed Germination and Its Mechanism [J]. Biotechnology Bulletin, 2025, 41(1): 14-24. |
| [4] | LI Yu-xin, LI Miao, DU Xiao-fen, HAN Kang-ni, LIAN Shi-chao, WANG Jun. Identification and Expression Analysis of SiSAP Gene Family in Foxtail Millet(Setaria italica) [J]. Biotechnology Bulletin, 2025, 41(1): 143-156. |
| [5] | WANG Zi-ao, TIAN Rui, CUI Yong-mei, BAI Yi-xiong, YAO Xiao-hua, AN Li-kun, WU Kun-lun. Bioinformatics and Expression Pattern Analysis of HvnJAZ4 Gene in Hulless Barley [J]. Biotechnology Bulletin, 2025, 41(1): 173-185. |
| [6] | KONG Qing-yang, ZHANG Xiao-long, LI Na, ZHANG Chen-jie, ZHANG Xue-yun, YU Chao, ZHANG Qi-xiang, LUO Le. Identification and Expression Analysis of GRAS Transcription Factor Family in Rosa persica [J]. Biotechnology Bulletin, 2025, 41(1): 210-220. |
| [7] | SHEN Peng, GAO Ya-Bin, DING Hong. Identification and Expression Analysis of SAT Gene Family in Potato(Solanum tuberosum L.) [J]. Biotechnology Bulletin, 2024, 40(9): 64-73. |
| [8] | SONG Bing-fang, LIU Ning, CHENG Xin-yan, XU Xiao-bin, TIAN Wen-mao, GAO Yue, BI Yang, WANG Yi. Identification of Potato G6PDH Gene Family and Its Expression Analysis in Damaged Tubers [J]. Biotechnology Bulletin, 2024, 40(9): 104-112. |
| [9] | WU Hui-qin, WANG Yan-hong, LIU Han, SI Zheng, LIU Xue-qing, WANG Jing, YANG Yi, CHENG Yan. Identification and Expression Analysis of UGT Gene Family in Pepper [J]. Biotechnology Bulletin, 2024, 40(9): 198-211. |
| [10] | TAN Bo-wen, ZHANG Yi, ZHANG Peng, WANG Zhen-yu, MA Qiu-xiang. Identification and Bioinformatics Analysis of Gene in the Magnesium Transporter Family in Cassava [J]. Biotechnology Bulletin, 2024, 40(9): 20-32. |
| [11] | MAN Quan-cai, MENG Zi-nuo, LI Wei, CAI Xin-ru, SU Run-dong, FU Chang-qing, GAO Shun-juan, CUI Jiang-hui. Identification and Expression Analysis of AQP Gene Family in Potato [J]. Biotechnology Bulletin, 2024, 40(9): 51-63. |
| [12] | WU Juan, WU Xiao-juan, WANG Pei-jie, XIE Rui, NIE Hu-shuai, LI Nan, MA Yan-hong. Screening and Expression Analysis of ERF Gene Related to Anthocyanin Synthesis in Colored Potato [J]. Biotechnology Bulletin, 2024, 40(9): 82-91. |
| [13] | ZHOU Ran, WANG Xing-ping, LI Yan-xia, LUORENG Zhuo-ma. Analysis of LncRNA Differential Expression in Mammary Tissue of Cows with Staphylococcus aureus Mastitis [J]. Biotechnology Bulletin, 2024, 40(8): 320-328. |
| [14] | WU Shuai, XIN Yan-ni, MAI Chun-hai, MU Xiao-ya, WANG Min, YUE Ai-qin, ZHAO Jin-zhong, WU Shen-jie, DU Wei-jun, WANG Li-xiang. Genome-wide Identification and Stress Response Analysis of Soybean GS Gene Family [J]. Biotechnology Bulletin, 2024, 40(8): 63-73. |
| [15] | CUI Yuan-yuan, WANG Zhao-yi, BAI Shuang-yu, REN Yu-zhao, DOU Fei-fei, LIU Cai-xia, LIU Feng-lou, WANG Zhang-jun, LI Qing-feng. Genome-wide Identification of Non-specific Phospholipase C Gene Family in Hordeum vulgare L. and Stress Expression Analysis at Seedling Stage [J]. Biotechnology Bulletin, 2024, 40(8): 74-82. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||