Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (11): 3-13.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0668
Previous Articles Next Articles
ZHAO Rui-meng1,2(), WANG Meng-yu2, LYU Guo-ying2, SONG Ting-ting2, ZHANG Zuo-fa2()
Received:
2024-07-12
Online:
2024-11-26
Published:
2024-12-19
Contact:
ZHANG Zuo-fa
E-mail:15020629688@163.com;zzf2050@163.com
ZHAO Rui-meng, WANG Meng-yu, LYU Guo-ying, SONG Ting-ting, ZHANG Zuo-fa. Progress on the Medicinal Mechanism of Polyphenols in the Medicinal Fungus Sanghuang[J]. Biotechnology Bulletin, 2024, 40(11): 3-13.
物种 Species | 主要分布地区 Main distribution area |
---|---|
桑树桑黄S. sanghuang | 吉林省,四川省,湖南省,云南省,浙江省 |
杨树桑黄S. vaninii | 黑龙江省,辽宁省,吉林省,浙江省 |
暴马桑黄S. baumii | 黑龙江省,辽宁省,吉林省,山东省,河北省,山西省 |
高山桑黄S. alpinus | 西藏自治区,湖北省 |
锦带花桑黄S. weigelae | 贵州省,江西省,湖北省 |
小孔忍冬桑黄S. lonicericola | 陕西省,河南省 |
Table 1 Species and distribution of Sanghuang
物种 Species | 主要分布地区 Main distribution area |
---|---|
桑树桑黄S. sanghuang | 吉林省,四川省,湖南省,云南省,浙江省 |
杨树桑黄S. vaninii | 黑龙江省,辽宁省,吉林省,浙江省 |
暴马桑黄S. baumii | 黑龙江省,辽宁省,吉林省,山东省,河北省,山西省 |
高山桑黄S. alpinus | 西藏自治区,湖北省 |
锦带花桑黄S. weigelae | 贵州省,江西省,湖北省 |
小孔忍冬桑黄S. lonicericola | 陕西省,河南省 |
[1] | 吴声华, 黄冠中, 陈愉萍, 等. 桑黄的分类及开发前景[J]. 菌物研究, 2016, 14(4): 187-200, 185. |
Wu SH, Huang GZ, Chen YP, et al. Taxonomy and development prospects of Sanghuang(Sanghuangporus sanghuang)[J]. J Fungal Res, 2016, 14(4): 187-200, 185. | |
[2] | 昝立峰, 包海鹰, 李丹花. “桑黄”类真菌中多酚物质及其生物活性研究进展[J]. 天然产物研究与开发, 2016, 28(1): 147-155. |
Zan LF, Bao HY, Li DH. Review on polyphenol components from medicinal fungi “Sanghuang” and their biological activity[J]. Nat Prod Res Dev, 2016, 28(1): 147-155. | |
[3] | 陈万超, 杨焱, 张劲松, 等. 桑黄类真菌活性代谢产物的研究进展[J]. 食用菌学报, 2020, 27(4): 188-201. |
Chen WC, Yang Y, Zhang JS, et al. Recent advances in bioactive metabolites from ‘Sanghuang’ mushrooms[J]. Acta Edulis Fungi, 2020, 27(4): 188-201. | |
[4] | 张洋洋, 吕国英, 方立林, 等. 桑黄主要活性物质的提取方法及药理活性研究进展[J]. 食药用菌, 2021, 29(5): 404-408. |
Zhang YY, Lv GY, Fang LL, et al. Research progress on extraction methods and pharmacological activities of main active substances from Sanghuangporus spp.[J]. Edible Med Mushrooms, 2021, 29(5): 404-408. | |
[5] | Gao H, Yin CM, Li C, et al. Phenolic profile, antioxidation and anti-proliferation activity of phenolic-rich extracts from Sanghuangporus vaninii[J]. Curr Res Food Sci, 2023, 6: 100519. |
[6] | 崔诗遥. 桑黄多酚类化合物的成分鉴定及其抗肿瘤作用机制研究[D]. 杭州: 浙江大学, 2022. |
Cui SY. Research of the constituent characterization of Phellinus baumii polyphenols and its antitumor mechanism[D]. Hangzhou: Zhejiang University, 2022. | |
[7] | Zhang MD, Xie Y, Su X, et al. Inonotus sanghuang polyphenols attenuate inflammatory response via modulating the crosstalk between macrophages and adipocytes[J]. Front Immunol, 2019, 10: 286. |
[8] | 张超, 汪雯翰, 杨焱, 等. 鲍姆桑黄孔菌化合物对HepG2细胞葡萄糖消耗的影响及其作用机制的研究[J]. 菌物学报, 2016, 35(7): 857-864. |
Zhang C, Wang WH, Yang Y, et al. Compounds of Sanghuangporus baumii and their affecting mechanism of glucose consumption in insulin-resistant HepG2 cells[J]. Mycosystema, 2016, 35(7): 857-864. | |
[9] | 赵克芳, 肖阳, 邢东旭, 等. 桑黄游离酚提取物体外降尿酸活性研究[J]. 食品与发酵工业, 2024, 50(10): 119-126. |
Zhao KF, Xiao Y, Xing DX, et al. Study on uric acid-lowering activity of Sanghuangporus sanghuang[J]. Food and Fermentation Industries, 2024, 50(10): 119-126. | |
[10] | 吴声华, 戴玉成. 药用真菌桑黄的种类解析[J]. 菌物学报, 2020, 39(5): 781-794. |
Wu SH, Dai YC. Species clarification of the medicinal fungus Sanghuang[J]. Mycosystema, 2020, 39(5): 781-794. | |
[11] | 万茜淋, 吴新民, 杨雪, 等. 桑黄孔菌属的化学成分及药理作用研究进展[J]. 菌物研究, 2022, 20(1): 65-71. |
Wan XL, Wu XM, Yang X, et al. Research progress on chemical constituents and pharmacological activity of Sanghuangporus[J]. Journal of Fungal Research, 2022, 20(1): 65-71. | |
[12] | 杨焱, 陈晓华, 戴玉成, 等. 我国桑黄产业发展现状、问题及展望: 桑黄产业发展千岛湖宣言[J]. 菌物学报, 2023, 42(4): 855-873. |
Yang Y, Chen XH, Dai YC, et al. Sanghuang industry in China: current status, challenges and perspectives: the Qiandao Lake declaration for Sanghuang industry development[J]. Mycosystema, 2023, 42(4): 855-873. | |
[13] | 张洋洋, 张作法, 宋婷婷, 等. 瓦尼桑黄多酚类化合物纯化及抗氧化活性[J]. 菌物学报, 2023, 42(4): 973-983. |
Zhang YY, Zhang ZF, Song TT, et al. Purification and antioxidant activities of polyphenolic compounds from Sanghuangporus vaninii[J]. Mycosystema, 2023, 42(4): 973-983. | |
[14] | 崔宝凯, 戴玉成, 杨宏. 药用真菌粗毛纤孔菌概述[J]. 中国食用菌, 2009, 28(4): 6-7. |
Cui BK, Dai YC, Yang H. Notes on the medicinal fungus of Inonotus hispidus[J]. Edible Fungi China, 2009, 28(4): 6-7. | |
[15] | Hsieh PW, Wu JB, Wu YC. Chemistry and biology of Phellinus linteus[J]. BioMedicine, 2013, 3(3): 106-113. |
[16] | 包海鹰, 杨烁, 李庆杰, 等. “桑黄” 的本草补充考证[J]. 菌物研究, 2017, 15(4): 264-270. |
Bao HY, Yang S, Li QJ, et al. Supplementary textual research on “Sanghuang”[J]. J Fungal Res, 2017, 15(4): 264-270. | |
[17] | 刘春静, 戴玉成. 中国锈革孔菌科一新记录种——忍冬木层孔菌[J]. 林业科学研究, 2002, 15(4): 413-415. |
Liu CJ, Dai YC. A new polypore in China- Phellinus lonicericola[J]. For Res, 2002, 15(4): 413-415. | |
[18] | 王超儀. “桑黄”的生药学鉴定及抗肿瘤活性的对比研究[D]. 长春: 吉林农业大学, 2013. |
Wang CY. Study on pharmacognosy and anti-tumor effect of “Sanghuang”[D]. Changchun: Jilin Agricultural University, 2013. | |
[19] | 胡真臻. 我国热区木层孔菌属所致几种林木根腐及茎腐病的病原菌鉴定[D]. 海口: 海南大学, 2020. |
Hu ZZ. Identification of the pathogens of several forest trees root rot and stem rot caused by Phellinus[D]. Haikou: Hainan University, 2020. | |
[20] | 戴玉成. 一种新的药用真菌——瓦尼木层孔菌(杨黄)[J]. 中国食用菌, 2003, 22(5): 7-8. |
Dai YC. A new medicinal fungus-Phellinus vaninii[J]. Edible Fungi China, 2003, 22(5): 7-8. | |
[21] | 邵蕴和, 陆琦, 李晓敏, 等. 粗毛纤孔菌的营养及活性成分分析[J]. 微生物学通报, 2024, 51(9): 3614-3628. |
Sao YH, Lu Q, Li XM, et al. Nutritional value and active components of Inonotus hispidus[J]. Microbiology China, 2024, 51(9): 3614-3628. | |
[22] | 昝立峰. 粗毛纤孔菌与椭圆嗜蓝孢孔菌子实体的化学成分及其药理活性研究[D]. 长春: 吉林农业大学, 2013. |
Zan LF. Studies on the chemical constituents and pharmacological activities of Inonotus hispidus and Fomitiporia ellipsoidea[D]. Changchun: Jilin Agricultural University, 2013. | |
[23] | 潘学仁, 邹利, 户岩岩, 等. 东亚地区“桑黄” 物种问题讨论[J]. 中国食用菌, 2008, 27(1): 63-64, 67. |
Pan XR, Zou L, Hu YY, et al. Discussion on the issue of "Sanghuang" species in East Asia[J]. Edible Fungi China, 2008, 27(1): 63-64, 67. | |
[24] | 张莹璐, 夏伯阳, 陈天娇, 等. 不同种桑黄子实体醇提物化学组成及抗氧化活性比较[J]. 菌物学报, 2024, 43(4): 72-83. |
Zhang YL, Xia BY, Chen TJ, et al. A comparison of chemical compositions and antioxidant activities of ethanol extracts from basidiomata between different Sanghuang species[J]. Mycosystema, 2024, 43(4): 72-83. | |
[25] | 闫帅帅, 郭辛茹, 徐建国, 等. 桑黄裂蹄针层孔菌提取物生物活性成分及功能特性分析[J]. 食品研究与开发, 2023, 44(23): 22-28. |
Yan SS, Guo XR, Xu JG, et al. Analysis of bioactive components and functional properties of extract from Phellinus linteus[J]. Food Res Dev, 2023, 44(23): 22-28. | |
[26] | Peng SJ, Hou YN, Chen ZH. Hispolon alleviates oxidative damage by stimulating the Nrf2 signaling pathway in PC12 cells[J]. Arch Biochem Biophys, 2022, 727: 109303. |
[27] | Zhang JJ, Chen BS, Dai HQ, et al. Sesquiterpenes and polyphenols with glucose-uptake stimulatory and antioxidant activities from the medicinal mushroom Sanghuangporus sanghuang[J]. Chin J Nat Med, 2021, 19(9): 693-699. |
[28] | Zan LF, Xin JC, Zhi JH, et al. Qualitative analysis using UPLC-Q-TOF/MS and a systematic network pharmacology-based strategy to investigate the active constituents and potential mechanisms against breast cancer in the fruit body of Sanghuangporus vaninii[J]. Nat Prod Commun, 2024, 19(5): 1-16. |
[29] | Liu X, Cui SY, Li WL, et al. Elucidation of the anti-colon cancer mechanism of Phellinus baumii polyphenol by an integrative approach of network pharmacology and experimental verification[J]. Int J Biol Macromol, 2023, 253(Pt 6): 127429. |
[30] | Liu X, Cui SY, Dan CY, et al. Phellinus baumii polyphenol: a potential therapeutic candidate against lung cancer cells[J]. International Journal of Molecular Sciences, 2022, 23(24): 16141. |
[31] | 昝立峰, 郭海燕, 包海鹰, 等. 鲍姆桑黄子实体提取物的体外细胞毒活性及其化学成分分析[J]. 菌物学报, 2023, 42(4): 961-972. |
Zan LF, Guo HY, Bao HY, et al. Characterization of cytotoxicity and chemical constituents of extracts of Sanghuangporus baumii basidiomata[J]. Mycosystema, 2023, 42(4): 961-972. | |
[32] | Lee MS, Hwang BS, Lee IK, et al. Chemical constituents of the culture broth of Phellinus linteus and their antioxidant activity[J]. Mycobiology, 2015, 43(1): 43-48. |
[33] | 丁云云, 刘锋, 施超, 等. 桑黄化学成分及体外抗肿瘤活性研究[J]. 中国中药杂志, 2016, 41(16): 3042-3048. |
Ding YY, Liu F, Shi C, et al. Chemical constituents from Phellinus igniarius and their anti-tumor activity in vitro[J]. China J Chin Mater Med, 2016, 41(16): 3042-3048. | |
[34] | Lee IK, Yun BS. Highly oxygenated and unsaturated metabolites providing a diversity of hispidin class antioxidants in the medicinal mushrooms Inonotus and Phellinus[J]. Bioorg Med Chem, 2007, 15(10): 3309-3314. |
[35] | Lee IK, Han MS, Lee MS, et al. Styrylpyrones from the medicinal fungus Phellinus baumii and their antioxidant properties[J]. Bioorg Med Chem Lett, 2010, 20(18): 5459-5461. |
[36] | Ye LB, Zheng HJ, Zhang Z, et al. Preparative isolation of 5 antioxidant constituents from the medicinal mushroom Phellinus baumii(Agaricomycetes)by high-speed countercurrent chromatography and preparative high-performance liquid chromatography[J]. Int J Med Mushrooms, 2017, 19(4): 319-326. |
[37] | Chen W, Feng LN, Huang ZY, et al. Hispidin produced from Phellinus linteus protects against peroxynitrite-mediated DNA damage and hydroxyl radical generation[J]. Chem Biol Interact, 2012, 199(3): 137-142. |
[38] | Huang SY, Chang SF, Chau SF, et al. The protective effect of hispidin against hydrogen peroxide-induced oxidative stress in ARPE-19 cells via Nrf2 signaling pathway[J]. Biomolecules, 2019, 9(8): 380. |
[39] | Kim DE, Kim B, Shin HS, et al. The protective effect of hispidin against hydrogen peroxide-induced apoptosis in H9c2 cardiomyoblast cells through Akt/GSK-3β and ERK1/2 signaling pathway[J]. Exp Cell Res, 2014, 327(2): 264-275. |
[40] | Lv LX, Zhou ZX, Zhou Z, et al. Hispidin induces autophagic and necrotic death in SGC-7901 gastric cancer cells through lysosomal membrane permeabilization by inhibiting tubulin polymerization[J]. Oncotarget, 2017, 8(16): 26992-27006. |
[41] | Lee JH, Lee JS, Kim YR, et al. Hispidin isolated from Phellinus linteus protects against hydrogen peroxide-induced oxidative stress in pancreatic MIN6N β-cells[J]. J Med Food, 2011, 14(11): 1431-1438. |
[42] | Lee EK, Koh EM, Kim YN, et al. Immunomodulatory effect of hispolon on LPS-induced RAW264.7 cells and mitogen/alloantigen-stimulated spleen lymphocytes of mice[J]. Pharmaceutics, 2022, 14(7): 1423. |
[43] | Kim JE, Takanche JS, Yun BS, et al. Anti-inflammatory character of Phelligridin D modulates periodontal regeneration in lipopolysaccharide-induced human periodontal ligament cells[J]. J Periodontal Res, 2018, 53(5): 816-824. |
[44] | Wu MS, Chien CC, Cheng KT, et al. Hispolon suppresses LPS- or LTA-induced iNOS/NO production and apoptosis in BV-2 microglial cells[J]. Am J Chin Med, 2017, 45(8): 1649-1666. |
[45] | Jin MH, Chen DQ, Jin YH, et al. Hispidin inhibits LPS-induced nitric oxide production in BV-2 microglial cells via ROS-dependent MAPK signaling[J]. Exp Ther Med, 2021, 22(3): 970. |
[46] | Chao W, Deng JS, Huang SS, et al. 3, 4-dihydroxybenzalacetone attenuates lipopolysaccharide-induced inflammation in acute lung injury via down-regulation of MMP-2 and MMP-9 activities through suppressing ROS-mediated MAPK and PI3K/AKT signaling pathways[J]. Int Immunopharmacol, 2017, 50: 77-86. |
[47] | Huang CY, Deng JS, Huang WC, et al. Attenuation of lipopolysaccharide-induced acute lung injury by hispolon in mice, through regulating the TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 pathways, and suppressing oxidative stress-mediated ER stress-induced apoptosis and autophagy[J]. Nutrients, 2020, 12(6): 1742. |
[48] | Su X, Liu K, Xie Y, et al. Protective effect of a polyphenols-rich extract from Inonotus Sanghuang on bleomycin-induced acute lung injury in mice[J]. Life Sci, 2019, 230: 208-217. |
[49] | Hsieh YC, Dai YC, Cheng KT, et al. Blockade of the SRC/STAT3/BCL-2 signaling axis sustains the cytotoxicity in human colorectal cancer cell lines induced by dehydroxyhispolon methyl ether[J]. Biomedicines, 2023, 11(9): 2530. |
[50] | Kim JH, Kim YC, Park B. Hispolon from Phellinus linteus induces apoptosis and sensitizes human cancer cells to the tumor necrosis factor-related apoptosis-inducing ligand through upregulation of death receptors[J]. Oncol Rep, 2016, 35(2): 1020-1026. |
[51] | Masood M, Rasul A, Sarfraz I, et al. Hispolon induces apoptosis against prostate DU145 cancer cells via modulation of mitochondrial and STAT3 pathways[J]. Pak J Pharm Sci, 2019, 32:5(Supplementary): 2237-2243. |
[52] | Pangjantuk A, Chueaphromsri P, Kunhorm P, et al. Hispolon, A bioactive compound from Phellinus linteus, induces apoptosis of human breast cancer cells through the modulation of oxidative stress and autophagy[J]. J Biol Act Prod Nat, 2023, 13(1): 1-11. |
[53] | Qiu P, Liu JQ, Zhao LS, et al. Inoscavin A, a pyrone compound isolated from a Sanghuangporus vaninii extract, inhibits colon cancer cell growth and induces cell apoptosis via the hedgehog signaling pathway[J]. Phytomedicine, 2022, 96: 153852. |
[54] | Chen FH, Gong MC, Weng DC, et al. Phellinus linteus activates Treg cells via FAK to promote M2 macrophage polarization in hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2024, 73(1): 18. |
[55] | Yang Y, He PY, Hou YH, et al. Osmundacetone modulates mitochondrial metabolism in non-small cell lung cancer cells by hijacking the glutamine/glutamate/α-KG metabolic axis[J]. Phytomedicine, 2022, 100: 154075. |
[56] | Lee WH, Chen LC, Lee CJ, et al. DNA primase polypeptide 1(PRIM1)involves in estrogen-induced breast cancer formation through activation of the G2/M cell cycle checkpoint[J]. Int J Cancer, 2019, 144(3): 615-630. |
[57] | Liao KF, Chiu TL, Chang SF, et al. Hispolon induces apoptosis, suppresses migration and invasion of glioblastoma cells and inhibits GBM xenograft tumor growth in vivo[J]. Molecules, 2021, 26(15): 4497. |
[58] | Hong DR, Park MJ, Jang EH, et al. Hispolon as an inhibitor of TGF-β-induced epithelial-mesenchymal transition in human epithelial cancer cells by co-regulation of TGF-β-Snail/Twist axis[J]. Oncol Lett, 2017, 14(4): 4866-4872. |
[59] | Hsin MC, Hsieh YH, Wang PH, et al. Hispolon suppresses metastasis via autophagic degradation of cathepsin S in cervical cancer cells[J]. Cell Death Dis, 2017, 8(10): e3089. |
[60] | Chao W, Deng JS, Li PY, et al. 3, 4-dihydroxybenzalactone suppresses human non-small cell lung carcinoma cells metastasis via suppression of epithelial to mesenchymal transition, ROS-mediated PI3K/AKT/MAPK/MMP and NFκB signaling pathways[J]. Molecules, 2017, 22(4): 537. |
[61] | 郑美瑜, 王璐, 刘哲, 等. 桑黄中抑制α-葡萄糖苷酶活性成分提取及其化学成分鉴定[J]. 浙江农业学报, 2022, 34(5): 949-958. |
Zheng MY, Wang L, Liu Z, et al. Extraction and identification of α-glucosidase-inhibitory components from Phellinus baumii[J]. Acta Agric Zhejiangensis, 2022, 34(5): 949-958. | |
[62] | Lee YS, Kang IJ, Won MH, et al. Inhibition of protein tyrosine phosphatase 1beta by hispidin derivatives isolated from the fruiting body of Phellinus linteus[J]. Nat Prod Commun, 2010, 5(12): 1927-1930. |
[63] | Zheng SJ, Deng SH, Huang Y, et al. Anti-diabetic activity of a polyphenol-rich extract from Phellinus igniarius in KK-Ay mice with spontaneous type 2 diabetes mellitus[J]. Food Funct, 2018, 9(1): 614-623. |
[64] | Song TY, Yang NC, Chen CL, et al. Protective effects and possible mechanisms of ergothioneine and hispidin against methylglyoxal-induced injuries in rat pheochromocytoma cells[J]. Oxid Med Cell Longev, 2017, 2017: 4824371. |
[65] | Suabjakyong P, Saiki R, Van Griensven LJLD, et al. Polyphenol extract from Phellinus igniarius protects against acrolein toxicity in vitro and provides protection in a mouse stroke model[J]. PLoS One, 2015, 10(3): e0122733. |
[66] | Li HX, Zhang XY, Gu LL, et al. Anti-gout effects of the medicinal fungus Phellinus igniarius in hyperuricaemia and acute gouty arthritis rat models[J]. Front Pharmacol, 2022, 12: 801910. |
[67] | Chen DM, Jiang CL, Lu H. Study on the mechanism of Phellinus igniarius total flavonoids in reducing uric acid and protecting uric acid renal injury in vitro[J]. Heliyon, 2023, 9(1): e12979. |
[68] | Chepkirui C, Cheng T, Matasyoh J, et al. An unprecedented spiro[furan-2, 1'-indene]-3-one derivative and other nematicidal and antimicrobial metabolites from Sanghuangporus sp.(Hymenochaetaceae, Basidiomycota)collected in Kenya[J]. Phytochem Lett, 2018, 25: 141-146. |
[69] | Hwang BS, Lee IK, Choi HJ, et al. Anti-influenza activities of polyphenols from the medicinal mushroom Phellinus baumii[J]. Bioorg Med Chem Lett, 2015, 25(16): 3256-3260. |
[70] | Kim JY, Kim DW, Hwang BS, et al. Neuraminidase inhibitors from the fruiting body of Phellinus igniarius[J]. Mycobiology, 2016, 44(2): 117-120. |
[71] | Song JL, Wang ZW, Chi Y, et al. Anti-gout activity and the interaction mechanisms between Sanghuangporus vaninii active components and xanthine oxidase[J]. Bioorg Chem, 2023, 133: 106394. |
[72] | Yi YJ, Lee IK, Lee SM, et al. An antioxidant davallialactone from Phellinus baumii enhances sperm penetration on in vitro fertilization of pigs[J]. Mycobiology, 2016, 44(1): 54-57. |
[1] | WANG Nan, LIAO Yong-qin, SHI Zhu-feng, SHEN Yun-xin, YANG Tong-yu, FENG Lu-yao, YI Xiao-peng, TANG Jia-cai, CHEN Qi-bin, YANG Pei-wen. Identification of Three Strains of Bacillus from the Forest Soil of Wuliang Mountain and Mining of Their Bioactivities [J]. Biotechnology Bulletin, 2024, 40(2): 277-288. |
[2] | KANG Xiao-bo, ZHANG Jing-xi, LU Tian-tian, LIU Ya-yue, ZHOU Long-jian, ZHANG Yi. Variation of Bioactivities and Secondary Metabolomics of Marine Fungus Aspergillus unguis DLEP2008001 Cultured under Different Salinities [J]. Biotechnology Bulletin, 2024, 40(11): 296-311. |
[3] | WANG Yu-yang, LIU Peng, ZHANG Zhong, CHEN Wan-chao, WU Di, LI Wen, YANG Yan. In Vitro Anti-tumor Effect and Its Mechanism of Polyphenols from Sanghuangporus vaninii Based on Network Pharmacology [J]. Biotechnology Bulletin, 2024, 40(11): 68-77. |
[4] | XUE Fan-zheng, HUANG Hai-chen, WU Fu-quan, LI Xiao-min, WU Xiao-ping, FU Jun-sheng. Research Status and Industrial Application of Fungal Melanin [J]. Biotechnology Bulletin, 2021, 37(11): 32-41. |
[5] | HUANG Xiao-dan, CHEN Meng-yu, HUANG Wen-jie, ZHANG Ming-wei, YAN Shi-juan. Progress Based on Metabolomics:Plant Polyphenols and Their Gut Health Benefit [J]. Biotechnology Bulletin, 2021, 37(1): 123-136. |
[6] | ZHAO Xiang-jie, YANG Wen-jun, YANG Rong-ling, WU Ting-ting, WANG Zhao-yu, XU Ning-ning, HE Jia-mei. Research Progress on Biotransformation Modification of Anthocyanins [J]. Biotechnology Bulletin, 2019, 35(10): 205-211. |
[7] | BAI Yang, ZHANG Yong-lei, ZOU You-tu, HUANG Fen-fei, CHEN Sheng-liang, RUAN Ka, GE Ping-hui, MA Yan-ling, WANG Ming-zao, CHEN Xing. Soluble Expression,Purification and Activity Assay of Recombinant Human βNGF Expressed in Escherichia coli [J]. Biotechnology Bulletin, 2016, 32(11): 202-207. |
[8] | ZHAO Jing, LI Nan, WU Ru, YANG Zhan-wei, HU Wen-bing, WANG Wen-jun. Research Advance on the Effect of Food Functional Components on Animal Genomic DNA Methylation [J]. Biotechnology Bulletin, 2016, 32(1): 15-19. |
[9] | Wu Tian,Liu Ying,Yu Chao,Bian Qiang,Tian Fang,Huang Qiong,Chen Huamin,He Chenyang. Purification and Activity Assay of Flage llin from Acidovorax avenae sub. avenae NB001 [J]. Biotechnology Bulletin, 2013, 0(7): 78-81. |
[10] | Li Wenbin, Li Zengbo, Liu Xianjun. Research on Biological Activity of Antibiotic Analogues in SC-04 Culture [J]. Biotechnology Bulletin, 2013, 0(5): 190-193. |
[11] | Liang Hongwei Chen Faju Wang Yubing Li Fenglan, Lu Hai. Expression of Human Glucagon-like Peptide-1 in Transgenic Tobaccos [J]. Biotechnology Bulletin, 2013, 0(1): 139-143. |
[12] | Xu Tingting, Chen Ruibo, Bao Yuanyuan, Zhao Weidong, Zheng Zhenyu, Li Chunli . Expression of Plant des-pGlu1-Brazzein Gene in Alcohol OxidasedefectiveStrain of Pichia pastoris and Analysis of Its Biological Activity [J]. Biotechnology Bulletin, 2012, 0(12): 139-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||