Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (11): 296-311.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0150
Previous Articles Next Articles
KANG Xiao-bo1(), ZHANG Jing-xi1, LU Tian-tian1, LIU Ya-yue1,2, ZHOU Long-jian1,2, ZHANG Yi1,2,3()
Received:
2024-02-11
Online:
2024-11-26
Published:
2024-12-19
Contact:
ZHANG Yi
E-mail:k17701892041@126.com;hubeizhangyi@163.com
KANG Xiao-bo, ZHANG Jing-xi, LU Tian-tian, LIU Ya-yue, ZHOU Long-jian, ZHANG Yi. Variation of Bioactivities and Secondary Metabolomics of Marine Fungus Aspergillus unguis DLEP2008001 Cultured under Different Salinities[J]. Biotechnology Bulletin, 2024, 40(11): 296-311.
Fig. 1 Thin layer chromatography analysis of extracts from the liquid culture and solid culture of the strain on the day 14 and 28 and bioautography images of anti-oxidative and acetylcholinesterase's inhibitory activity A1-A6: 254 nm UV images of strain extract; B1-B6: 365 nm fluorescence images of strain extract; C1-C6: bioautography images of DPPH radical scavenging activity; D1-D6: bioautography images of strain extract AChE inhibitory activity; E1-E6: colorized images of strain extract anisaldehyde-sulfuric acid; F1-F6: colorized images strain extract iron trichloride-potassium ferrocyanide. The number under the images indicate different salinities(unit: g/L). The same below
培养类型Culture type | 培养时间Culture time/d | 提取物 Extracts | 不同手段展示的主要差异斑点(比移值)及其对应盐度 The main different spots(shown by Rf values)displayed by different approaches and the corresponding salinities | |||||
---|---|---|---|---|---|---|---|---|
254 nm紫外光 254 nm ultraviolet | 365 nm紫外光 365 nm ultraviolet | 抗氧化活性自显影 Antioxidant bioautography | AChE抑制活性自显影 AChE inhibitory bioautography | 茴香醛显色 Anisaldehyde coloration | 铁氰化钾-三氯化铁显色Potassium ferricyanide-FeCl3 coloration | |||
液体培养Liquid culture | 14 | 菌丝体提取物 Mycelial extract | — | — | — | Rf(0.6, 0.8): 10, 15 g/L | Rf(0.2, 1.0): 2, 5, 10 g/L | — |
发酵液提取物 Broth extract | — | Rf(0.6, 1.0): 5 g/L | Rf(0.4, 0.8): 0.5, 2, 5 g/L | Rf(0.8, 1.0): 0, 0.5, 2, 5 g/L | — | — | ||
28 | 菌丝体提取物 Mycelial extract | — | — | — | — | Rf(0.0, 1.0): 5 g/L | — | |
发酵液提取物 Broth extract | Rf(0.8, 1.0): 0, 0.5 g/L | — | Rf(0.5): 0, 0.5 g/L | — | — | — | ||
固体培养Solid culture | 14 | 总提取物 Total extract | Rf(0.4, 1.0): 5, 10 g/L | — | Rf(0.4, 1.0): 5, 10 g/L | Rf(0.4, 0.6): 0, 0.5, 2 g/L Rf(0.6, 0.8): 5, 10 g/L | Rf(0.0, 1.0): 5 g/L | Rf(0.4, 1.0): 5, 10 g/L |
28 | 总提取物 Total extract | Rf(0.6, 1.0): 5, 10 g/L | — | Rf(0.2, 0.5): 5, 10 g/L | Rf(0.8, 1.0): 5 g/L | Rf(0.0, 1.0): 5 g/L | Rf(0.6, 0.8): 5, 10 g/L Rf(0.2, 0.4): 5 g/L |
Table 1 Main different spots displayed in the thin layer chromatography analysis and anti-oxidative and acetylcholinesterase inhibitory bioautographies of different groups of fungal extracts and corresponding salinity conditions
培养类型Culture type | 培养时间Culture time/d | 提取物 Extracts | 不同手段展示的主要差异斑点(比移值)及其对应盐度 The main different spots(shown by Rf values)displayed by different approaches and the corresponding salinities | |||||
---|---|---|---|---|---|---|---|---|
254 nm紫外光 254 nm ultraviolet | 365 nm紫外光 365 nm ultraviolet | 抗氧化活性自显影 Antioxidant bioautography | AChE抑制活性自显影 AChE inhibitory bioautography | 茴香醛显色 Anisaldehyde coloration | 铁氰化钾-三氯化铁显色Potassium ferricyanide-FeCl3 coloration | |||
液体培养Liquid culture | 14 | 菌丝体提取物 Mycelial extract | — | — | — | Rf(0.6, 0.8): 10, 15 g/L | Rf(0.2, 1.0): 2, 5, 10 g/L | — |
发酵液提取物 Broth extract | — | Rf(0.6, 1.0): 5 g/L | Rf(0.4, 0.8): 0.5, 2, 5 g/L | Rf(0.8, 1.0): 0, 0.5, 2, 5 g/L | — | — | ||
28 | 菌丝体提取物 Mycelial extract | — | — | — | — | Rf(0.0, 1.0): 5 g/L | — | |
发酵液提取物 Broth extract | Rf(0.8, 1.0): 0, 0.5 g/L | — | Rf(0.5): 0, 0.5 g/L | — | — | — | ||
固体培养Solid culture | 14 | 总提取物 Total extract | Rf(0.4, 1.0): 5, 10 g/L | — | Rf(0.4, 1.0): 5, 10 g/L | Rf(0.4, 0.6): 0, 0.5, 2 g/L Rf(0.6, 0.8): 5, 10 g/L | Rf(0.0, 1.0): 5 g/L | Rf(0.4, 1.0): 5, 10 g/L |
28 | 总提取物 Total extract | Rf(0.6, 1.0): 5, 10 g/L | — | Rf(0.2, 0.5): 5, 10 g/L | Rf(0.8, 1.0): 5 g/L | Rf(0.0, 1.0): 5 g/L | Rf(0.6, 0.8): 5, 10 g/L Rf(0.2, 0.4): 5 g/L |
培养方式及时间 Type and time of culture | 盐度Salinity/(g·L-1) | 对不同指示菌的抗菌活性强度 Antimicrobial intensity to different indicator strains | ||||
---|---|---|---|---|---|---|
BS | SA | EC | PA | CA | ||
液体培养14 d Liquid culture for 14 d | 0 | - | - | - | - | - |
0.5 | - | - | - | - | - | |
2 | ++ | - | - | + | + | |
5 | +++ | - | - | ++ | - | |
10 | +++ | - | - | + | - | |
15 | - | - | - | - | - | |
20 | - | - | - | - | - | |
35 | - | - | - | - | - | |
液体培养28 d Liquid culture for 28 d | 0 | - | - | - | - | - |
0.5 | - | - | - | - | - | |
2 | +++ | - | - | + | - | |
5 | +++ | - | - | ++ | - | |
10 | +++ | - | - | +++ | - | |
15 | - | - | - | - | - | |
20 | - | - | + | - | - | |
35 | - | - | + | - | - | |
固体培养14 d Solid culture for 14 d | 0 | +++ | - | - | ++ | ++ |
0.5 | +++ | - | - | ++ | # | |
2 | - | - | - | ++ | # | |
5 | - | - | - | - | + | |
10 | - | - | - | - | + | |
15 | - | - | - | - | +++ | |
20 | - | - | - | - | +++ | |
35 | +++ | - | - | ++ | ++ | |
固体培养28 d Solid culture for 28 d | 0 | +++ | - | - | - | +++ |
0.5 | ++ | - | + | + | +++ | |
2 | +++ | - | +++ | +++ | ++ | |
5 | ++ | - | ++ | ++ | # | |
10 | +++ | - | - | - | # | |
15 | - | - | - | - | # | |
20 | - | - | - | - | # | |
35 | - | - | - | - | +++ |
Table 2 Preliminary antimicrobial screening results of the extracts of the strain cultured under different salinities
培养方式及时间 Type and time of culture | 盐度Salinity/(g·L-1) | 对不同指示菌的抗菌活性强度 Antimicrobial intensity to different indicator strains | ||||
---|---|---|---|---|---|---|
BS | SA | EC | PA | CA | ||
液体培养14 d Liquid culture for 14 d | 0 | - | - | - | - | - |
0.5 | - | - | - | - | - | |
2 | ++ | - | - | + | + | |
5 | +++ | - | - | ++ | - | |
10 | +++ | - | - | + | - | |
15 | - | - | - | - | - | |
20 | - | - | - | - | - | |
35 | - | - | - | - | - | |
液体培养28 d Liquid culture for 28 d | 0 | - | - | - | - | - |
0.5 | - | - | - | - | - | |
2 | +++ | - | - | + | - | |
5 | +++ | - | - | ++ | - | |
10 | +++ | - | - | +++ | - | |
15 | - | - | - | - | - | |
20 | - | - | + | - | - | |
35 | - | - | + | - | - | |
固体培养14 d Solid culture for 14 d | 0 | +++ | - | - | ++ | ++ |
0.5 | +++ | - | - | ++ | # | |
2 | - | - | - | ++ | # | |
5 | - | - | - | - | + | |
10 | - | - | - | - | + | |
15 | - | - | - | - | +++ | |
20 | - | - | - | - | +++ | |
35 | +++ | - | - | ++ | ++ | |
固体培养28 d Solid culture for 28 d | 0 | +++ | - | - | - | +++ |
0.5 | ++ | - | + | + | +++ | |
2 | +++ | - | +++ | +++ | ++ | |
5 | ++ | - | ++ | ++ | # | |
10 | +++ | - | - | - | # | |
15 | - | - | - | - | # | |
20 | - | - | - | - | # | |
35 | - | - | - | - | +++ |
Fig. 3 Bioautography re-screening results of the anti-microbial activities of the strain extracts via thin layer chromatography analysis A1-A4: The anti-Bacillus subtilis bioautography results of culture extracts of 14 d liquid culture, 28 d liquid culture, 14 d solid culture, and 28 d solid culture; B1-B2: the anti-Eschrichia coli bioautography results of culture extracts of 28 d liquid culture and 28 d solid culture; C1-C4: the anti-Pseudomonas aeruginosa bioautography results of culture extracts of 14 d liquid culture, 28 d liquid culture, 14 d solid culture, and 28 d solid culture; D1-D3: the anti-Candida albicans bioautography results of culture extracts of 14 d liquid culture, 14 d solid culture, and 28 d solid culture
Fig. 4 High performance liquid chromatography analysis of the strain extracts from different salinity cultures(The results are the full wavelength contour chromatograms detected by the diode array detector)
培养类型Culture type | 盐度 Salinity /(g·L-1) | 代谢物编号 No.of metabolite | 离子质荷比Mass-to-charge ratio of the precursor ion(m/z) | 缀合离子形式Form of adduct ions | 分子式 Molecular formula | 化合物名称 Compound name | 已有报道真菌来源 Previously reported fungal origin | 真菌来源文献 Literature for fungal origin |
---|---|---|---|---|---|---|---|---|
液体培养基 Liquid culture | 0.5 | 化合物1 Compound 1 | 417.1435 | [M+Na]+ | C21H27ClO5 | Isochromophilones IV | Penicillium multicolor | [ |
2 | 化合物2 Compound 2 | 477.3148 | [M+H-H2O]+ | C28H46O7 | 20-Hydroxyecdysone | Tapinella panuoides | [ | |
固体培养基 Solid culture | 5 | 化合物3 Compound 3 | 304.1362 | [M+H]+ | C13H21NO7 | 麦角菌素类 Mycosporin | Gnomonia leptostyla | [ |
化合物4 Compound 4 | 152.0088 | [M+H]+ | C7H5NOS | 2-苯并噻唑酮 2- Benzothiazolone | Dipodascus sp. | [ | ||
化合物5 Compound 5 | 233.1478 | [M+H-H2O]+ | C15H22O3 | 倍半萜类 Sesquiterpenoid | Drechslera gigantea | [ | ||
化合物6 Compound 6 | 169.0424 | [M+H]+ | C8H8O4 | 苔色酸 Orsellinic acid | Aspergillus sp. | [ | ||
化合物7 Compound 7 | 237.1435 | [M+H]+ | C14H22O4 | Gliocladic acid | Trichoderma virens | [ | ||
10 | 化合物8 Compound 8 | 277.0707 | [M+H]+ | C14H12O6 | Talaroflavone | Talaromyces flavus et al | [ | |
35 | 化合物9 Compound 9 | 214.0542 | [M+H]+ | C6H13N3O3 | 瓜氨酸 Citrulline | Schizosaccharomyces pombe | [ | |
化合物10 Compound 10 | 327.1181 | [M+H]+ | C19H18O5 | Unguinol | Aspergillus unguis | [ | ||
化合物11 Compound 11 | 380.1190 | [M+H]+ | C13H21N3O8S | S-D-乳酰谷胱甘肽 S-Lactoylglutathione | Saccharomyces cerevisiae | [ |
Table 3 Detailed annotation of the salinity featured metabolites in the day 28 extracts of the liquid and solid medium cultures
培养类型Culture type | 盐度 Salinity /(g·L-1) | 代谢物编号 No.of metabolite | 离子质荷比Mass-to-charge ratio of the precursor ion(m/z) | 缀合离子形式Form of adduct ions | 分子式 Molecular formula | 化合物名称 Compound name | 已有报道真菌来源 Previously reported fungal origin | 真菌来源文献 Literature for fungal origin |
---|---|---|---|---|---|---|---|---|
液体培养基 Liquid culture | 0.5 | 化合物1 Compound 1 | 417.1435 | [M+Na]+ | C21H27ClO5 | Isochromophilones IV | Penicillium multicolor | [ |
2 | 化合物2 Compound 2 | 477.3148 | [M+H-H2O]+ | C28H46O7 | 20-Hydroxyecdysone | Tapinella panuoides | [ | |
固体培养基 Solid culture | 5 | 化合物3 Compound 3 | 304.1362 | [M+H]+ | C13H21NO7 | 麦角菌素类 Mycosporin | Gnomonia leptostyla | [ |
化合物4 Compound 4 | 152.0088 | [M+H]+ | C7H5NOS | 2-苯并噻唑酮 2- Benzothiazolone | Dipodascus sp. | [ | ||
化合物5 Compound 5 | 233.1478 | [M+H-H2O]+ | C15H22O3 | 倍半萜类 Sesquiterpenoid | Drechslera gigantea | [ | ||
化合物6 Compound 6 | 169.0424 | [M+H]+ | C8H8O4 | 苔色酸 Orsellinic acid | Aspergillus sp. | [ | ||
化合物7 Compound 7 | 237.1435 | [M+H]+ | C14H22O4 | Gliocladic acid | Trichoderma virens | [ | ||
10 | 化合物8 Compound 8 | 277.0707 | [M+H]+ | C14H12O6 | Talaroflavone | Talaromyces flavus et al | [ | |
35 | 化合物9 Compound 9 | 214.0542 | [M+H]+ | C6H13N3O3 | 瓜氨酸 Citrulline | Schizosaccharomyces pombe | [ | |
化合物10 Compound 10 | 327.1181 | [M+H]+ | C19H18O5 | Unguinol | Aspergillus unguis | [ | ||
化合物11 Compound 11 | 380.1190 | [M+H]+ | C13H21N3O8S | S-D-乳酰谷胱甘肽 S-Lactoylglutathione | Saccharomyces cerevisiae | [ |
[1] | 马丽丽, 田新朋, 李桂菊, 等. 海洋微生物来源天然产物研究现状与态势[J]. 热带海洋学报, 2021, 40(5): 134-146. |
Ma LL, Tian XP, Li GJ, et al. Research status and development trends of natural products from marine microorganisms[J]. J Trop Oceanogr, 2021, 40(5): 134-146. | |
[2] | 付逸群, 于颖敏, 马瑞遥, 等. 海洋来源真菌生物活性物质研究进展[J]. 山东化工, 2019, 48(22): 63-65, 67. |
Fu YQ, Yu YM, Ma RY, et al. Advances in research on marine fungi bioactive substances[J]. Shandong Chem Ind, 2019, 48(22): 63-65, 67. | |
[3] | 陈宁, 喻圣凯, 刘冰, 等. 海洋真菌次级代谢产物及其活性研究进展[J]. 中国公共卫生管理, 2019, 35(1): 44-47. |
Chen N, Yu SK, Liu B, et al. Advances in research on secondary metabolites and activities of marine fungi[J]. Chin J Public Health Manag, 2019, 35(1): 44-47. | |
[4] | 胡靖瑶, 袁瑞瑛, 王广明, 等. 海洋真菌Aspergillus jensenii SS5中化学成分研究[J]. 天然产物研究与开发, 2023, 35(11): 1902-1906. |
Hu JY, Yuan RY, Wang GM, et al. Chemical constituents of marine fungus Aspergillus jensenii SS5[J]. Nat Prod Res Dev, 2023, 35(11): 1902-1906. | |
[5] | Yang WC, Bao HY, Liu YY, et al. Depsidone derivatives and a cyclopeptide produced by marine fungus Aspergillus unguis under chemical induction and by its plasma induced mutant[J]. Molecules, 2018, 23(9): 2245. |
[6] | Wang Y, Glukhov E, He YF, et al. Secondary metabolite variation and bioactivities of two marine Aspergillus strains in static co-culture investigated by molecular network analysis and multiple database mining based on LC-PDA-MS/MS[J]. Antibiotics, 2022, 11(4): 513. |
[7] | 马小翔, 刘亚月, 聂影影, 等. 基于质谱的分子网络分析化学调控对土曲霉C23-3次生代谢产物及生物活性的影响[J]. 生物技术通报, 2021, 37(8): 95-110. |
Ma XX, Liu YY, Nie YY, et al. LC-MS/MS based molecular network analysis of the effects of chemical regulation on the secondary metabolites and biological activities of a fungal strain Aspergillus terreus C23-3[J]. Biotechnol Bull, 2021, 37(8): 95-110. | |
[8] | Wang Y, Lu ZY, Sun KL, et al. Effects of high salt stress on secondary metabolite production in the marine-derived fungus Spicaria elegans[J]. Mar Drugs, 2011, 9(4): 535-542. |
[9] | Wang Y, Zheng JK, Liu PP, et al. Three new compounds from Aspergillus terreus PT06-2 grown in a high salt medium[J]. Mar Drugs, 2011, 9(8): 1368-1378. |
[10] | 王治维, 窦莹颖, 祝兴伟, 等. 盐度和pH对红树根际土壤来源的曲霉属真菌F3的生长及分泌活性物质的影响[J]. 微生物学通报, 2008, 35(12): 1873-1878. |
Wang ZW, Dou YY, Zhu XW, et al. Effects of salinity and pH on the growth and active products-secreting of Aspergillus sp. F3 from the mangrove rhizosphere[J]. Microbiology, 2008, 35(12): 1873-1878. | |
[11] | Overy D, Correa H, Roullier C, et al. Does osmotic stress affect natural product expression in fungi?[J]. Mar Drugs, 2017, 15(8): 254. |
[12] | 吴振龙, 王英, 叶文才. 天然生物活性分子高效发现的新策略和方法研究进展[J]. 药学进展, 2022, 46(3): 163-172. |
Wu ZL, Wang Y, Ye WC. Advances in research on novel strategies and approaches for the efficient discovery of bioactive natural molecules[J]. Prog Pharm Sci, 2022, 46(3): 163-172. | |
[13] | 覃舒然, 刘海翠, 李大山, 等. 质谱分子网络在天然产物结构研究中的应用[J]. 天然产物研究与开发, 2022, 34(11): 1978-1987. |
Qin SR, Liu HC, Li DS, et al. Application of mass spectrometry molecular networking in the study of natural product structure[J]. Nat Prod Res Dev, 2022, 34(11): 1978-1987. | |
[14] | Nothias LF, Petras D, Schmid R, et al. Feature-based molecular networking in the GNPS analysis environment[J]. Nat Methods, 2020, 17(9): 905-908. |
[15] | Lu TT, Liu YY, Zhou LJ, et al. The screening for marine fungal strains with high potential in alkaloids production by in situ colony assay and LC-MS/MS based secondary metabolic profiling[J]. Front Microbiol, 2023, 14: 1144328. |
[16] | Zhang Y, Mu J, Feng Y, et al. Four chlorinated depsidones from a seaweed-derived strain of Aspergillus unguis and their new biological activities[J]. Nat Prod Res, 2014, 28(7): 503-506. |
[17] | 张翼, 鲍海燕, 冯妍, 等. 一种海洋真菌爪曲霉溴代缩酚环酸醚类化合物及其制备方法和应用: CN106632230B[P]. 2019-09-10. |
Zhang Y, Bao H, Feng Y, et al. A marine fungal brominated depsidone-type compound and its preparation method and application: CN106632230B[P]. 2019-09-10. | |
[18] | 张翼, 杨文聪, 鲍海燕, 等. 一种缩酚酸环醚类化合物及其制备方法和应用: CN108640841B[P]. 2021-04-02. |
Zhang Y, Yang W, Bao H, et al. A depsidone-type compound and its preparation method and application: CN108640841B[P]. 2021-04-02. | |
[19] | 张翼, 杨文聪, 鲍海燕, 等. 一种缩酚酸环醚类化合物的应用: CN108925565B[P]. 2021-05-07. |
Zhang Y, Yang W, Bao H, et al. The application of a depsidone-type compound: CN108925565B[P]. 2021-05-07. | |
[20] | 张翼, 杨文聪, 聂影影, 等. 化合物Aspergillusidone G在制备神经保护药物中的应用: CN110604731B[P]. 2023-03-17. |
Zhang Y, Yang W, Nie Y, et al. The application of the compound Aspergillusidone G in the preparation of neuroprotective drugs: CN110604731B[P]. 2023-03-17. | |
[21] | Arai N, Shiomi K, Tomoda H, et al. Isochromophilones III-VI, inhibitors of acyl-CoA: cholesterol acyltransferase produced by Penicillium multicolor FO-3216[J]. J Antibiot, 1995, 48(7): 696-702. |
[22] | Vokáč K, Buděšńský M, Harmatha J, et al. Ecdysteroid constituents of the mushroom Tapinella panuoides[J]. Phytochemistry, 1998, 49: 2109-2114. |
[23] | Fayret J, Bernillon J, Bouillant ML, et al. Open and ring forms of mycosporin-2 from the ascomycete Gnomonia leptostyla[J]. Phytochemistry, 1981, 20(12): 2709-2710. |
[24] | Adriano R, Mara S, Jakub G, et al. LOTUS: Natural Products Online for 2-benzothiazolone[EB/OL]. (2022-02-27). [2023-12-24]. https://lotus.naturalproducts.net/compound/lotus_id/LTS0063626. |
[25] | Sugawara F, Hallock YF, Bunkers GD, et al. Phytoactive eremophilanes produced by the weed pathogen Drechslera gigantea[J]. Biosci Biotechnol Biochem, 1993, 57(2): 236-239. |
[26] | Packter NM. Studies on the biosynthesis of phenols in fungi. Conversion of[14C]orsellinic acid and[14C]orcinol into fumigatol by Aspergillus fumigatus I.M.I. 89353[J]. Biochem J, 1966, 98(2): 353-359. |
[27] | Chen HQ, Daletos G, Abdel-Aziz MS, et al. Inducing secondary metabolite production by the soil-dwelling fungus Aspergillus terreus through bacterial co-culture[J]. Phytochem Lett, 2015, 12: 35-41. |
[28] | Itoh Y, Takahashi S, Arai M. Structure of gliocladic acid[J]. J Antibiot, 1982, 35(4): 541-542. |
[29] | Ayer WA, Racok JS. The metabolites of Talaromycesflavus: part 2. Biological activity and biosynthetic studies[J]. Can J Chem, 1990, 68(11): 2095-2101. |
[30] | Aly AH, Ebel R, Edrada RA, et al. Protein kinase inhibitors from the endophytic fungus Alternaria sp. isolated from Polygonum senegalense growing in Egypt[J]. Planta Med, 2009, 75(9): PE55. |
[31] | Chaleckis R, Ebe M, Pluskal T, et al. Unexpected similarities between the Schizosaccharomyces and human blood metabolomes, and novel human metabolites[J]. Mol Biosyst, 2014, 10(10): 2538-2551. |
[32] | Stodola FH, Vesonder RF, Fennell DI, et al. A new depsidone from Aspergillus unguis[J]. Phytochemistry, 1972, 11(6): 2107-2108. |
[33] | Xia JY, Sánchez BJ, Chen Y, et al. Proteome allocations change linearly with the specific growth rate of Saccharomyces cerevisiae under glucose limitation[J]. Nat Commun, 2022, 13(1): 2819. |
[34] | National Center for Biotechnology Information. PubChem compound summary for CID 14543486[DB]. (2007-02-09). [2023-12-24]. . |
[35] | National Center for Biotechnology Information. PubChem compound summary for CID 68072[DB]. (2004-09-16). [2023-12-24]. . |
[36] | National Center for Biotechnology Information. PubChem compound summary for CID 26495249[DB]. (2009-05-28). [2023-12-24]. . |
[37] | Huang JJ, Lu CH, Qian XM, et al. Effect of salinity on the growth, biological activity and secondary metabolites of some marine fungi[J]. Acta Oceanol Sin, 2011, 30(3): 118-123. |
[38] | Li CJ, Zhao D, Yan JY, et al. Metabolomics integrated with transcriptomics: assessing the central metabolism of marine red yeast Sporobolomyces pararoseus under salinity stress[J]. Arch Microbiol, 2021, 203(3): 889-899. |
[39] | Jiménez-Gómez I, Valdés-Muñoz G, Moreno-Ulloa A, et al. Surviving in the brine: a multi-omics approach for understanding the physiology of the halophile fungus Aspergillus sydowii at saturated NaCl concentration[J]. Front Microbiol, 2022, 13: 840408. |
[40] | He B, Ma L, Hu ZH, et al. Deep sequencing analysis of transcriptomes in Aspergillus oryzae in response to salinity stress[J]. Appl Microbiol Biotechnol, 2018, 102(2): 897-906. |
[41] | Jones EBG, Ramakrishna S, Vikineswary S, et al. How do fungi survive in the sea and respond to climate change?[J]. J Fungi, 2022, 8(3): 291. |
[42] | Velez P, Alejandri-Ramírez ND, González MC, et al. Comparative transcriptome analysis of the cosmopolitan marine fungus Corollospora maritima under two physiological conditions[J]. G3, 2015, 5(9): 1805-1814. |
[43] | 廖清楠, 周龙建, 杨志友, 等. 石珊瑚共附生真菌次级代谢产物的抗炎活性及化学多样性研究[J]. 生物技术通报, 2023, 39(12): 261-275. |
Liao QN, Zhou LJ, Yang ZY, et al. Studies on anti-inflammatory activity and chemical diversity of secondary metabolites from symbiotic fungi in stony corals[J]. Biotechnol Bull, 2023, 39(12): 261-275. | |
[44] | 李祥荣, 郑洪利, 张宗艺, 等. 抗副溶血弧菌海洋真菌HL-3菌株的鉴定及其活性物质的分离[J]. 微生物学通报, 2022, 49(6): 1999-2008. |
Li XR, Zheng HL, Zhang ZY, et al. Identification of marine fungus HL-3 with activity against Vibrio parahaemolyticus and separation of its active substances[J]. Microbiol China, 2022, 49(6): 1999-2008. |
[1] | MA Xiao-xiang, MA Ze-yuan, LIU Ya-yue, ZHOU Long-jian, HE Yi-fan, ZHANG Yi. Effects of Simulated Mutational Biosynthetic Regulation on the Secondary Metabolites of Aspergillus terreus C23-3 [J]. Biotechnology Bulletin, 2024, 40(8): 275-287. |
[2] | PENG Feng, YU Hai-xia, ZHANG Kun, LIU Ying-ying, TAN Gui-yu. Review on the Regulation of Caleosin on Plant Lipid Droplet [J]. Biotechnology Bulletin, 2024, 40(4): 33-39. |
[3] | XU Pei-dong, YI Jian-feng, CHEN Di, PAN Lei, XIE Bing-yan, ZHAO Wen-jun. Research Progress in the Biocontrol Secondary Metabolites of Bacillus velezensis [J]. Biotechnology Bulletin, 2024, 40(3): 75-88. |
[4] | WANG Nan, LIAO Yong-qin, SHI Zhu-feng, SHEN Yun-xin, YANG Tong-yu, FENG Lu-yao, YI Xiao-peng, TANG Jia-cai, CHEN Qi-bin, YANG Pei-wen. Identification of Three Strains of Bacillus from the Forest Soil of Wuliang Mountain and Mining of Their Bioactivities [J]. Biotechnology Bulletin, 2024, 40(2): 277-288. |
[5] | ZHAO Zheng-yang, XIE Bing-yan, CHENG Xin-yue, LI Hui-xia. Progress in the Mining and Utilization of Insect-associated Actinomycete Resources [J]. Biotechnology Bulletin, 2024, 40(11): 113-124. |
[6] | ZHAO Rui-meng, WANG Meng-yu, LYU Guo-ying, SONG Ting-ting, ZHANG Zuo-fa. Progress on the Medicinal Mechanism of Polyphenols in the Medicinal Fungus Sanghuang [J]. Biotechnology Bulletin, 2024, 40(11): 3-13. |
[7] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
[8] | WANG Nan, SU Yu, LIU Wen-jie, FENG Ming, MAO Yu, ZHANG Xin-guo. Research Progress on Active Compounds Against Drug-resistant Microorganism from Plant Endophytes [J]. Biotechnology Bulletin, 2021, 37(8): 263-274. |
[9] | LIANG Zhen-ting, TANG Ting. Effects of Endophytes on Biosynthesis of Secondary Metabolites and Stress Tolerance in Plants [J]. Biotechnology Bulletin, 2021, 37(8): 35-45. |
[10] | MA Xiao-xiang, LIU Ya-yue, NIE Ying-ying, LI Yan-mei, WANG Yuan, XUE Xin-yi, HONG Peng-zhi, ZHANG Yi. LC-MS/MS Based Molecular Network Analysis of the Effects of Chemical Regulation on the Secondary Metabolites and Biological Activities of a Fungal Strain Aspergillus terreus C23-3 [J]. Biotechnology Bulletin, 2021, 37(8): 95-110. |
[11] | XUE Fan-zheng, HUANG Hai-chen, WU Fu-quan, LI Xiao-min, WU Xiao-ping, FU Jun-sheng. Research Status and Industrial Application of Fungal Melanin [J]. Biotechnology Bulletin, 2021, 37(11): 32-41. |
[12] | ZHAO Jiang-hua, FANG Huan, ZHANG Da-wei. Research Progress in Biosynthesis of Secondary Metabolites of Microorganisms [J]. Biotechnology Bulletin, 2020, 36(11): 141-147. |
[13] | XU Jie ,HUANG Jian-zhong, LI Li. Summary of Genomics Mining Technology and Its Research Progress in Fungi [J]. Biotechnology Bulletin, 2019, 35(11): 201-207. |
[14] | ZHAO Xiang-jie, YANG Wen-jun, YANG Rong-ling, WU Ting-ting, WANG Zhao-yu, XU Ning-ning, HE Jia-mei. Research Progress on Biotransformation Modification of Anthocyanins [J]. Biotechnology Bulletin, 2019, 35(10): 205-211. |
[15] | LIN Hai-zhou, CHEN Zhou-qin WANG Yan GUO Jun ZHU Hong-hui DENG Ming-rong. Mining the Cryptic Bioactive Secondary Metabolites from Streptomyces vietnamensis Using a‘Tree-Removal’Strategy [J]. Biotechnology Bulletin, 2017, 33(9): 145-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||