Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (4): 115-122.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0981
LIU Tong-tong(
), LI Xiao-hui, YANG Jun-long, CHEN Wang, YU Meng, WANG Chao-fan, WANG Feng-ru(
), KE Shao-ying(
)
Received:2024-10-08
Online:2025-04-26
Published:2025-04-25
Contact:
WANG Feng-ru, KE Shao-ying
E-mail:873742820@qq.com;wfr15931945160@126.com;kshy@hebau.edu.cn
LIU Tong-tong, LI Xiao-hui, YANG Jun-long, CHEN Wang, YU Meng, WANG Chao-fan, WANG Feng-ru, KE Shao-ying. Functional Study on ZmSTART1 Regulation of Maize Vascular Bundle Formation[J]. Biotechnology Bulletin, 2025, 41(4): 115-122.
类型 Type | 真叶面积 True leaf area/mm2 | 子叶面积 Cotyledon area/mm2 | 叶柄长 Petiole length/cm | 株高 Plant height/cm | 茎面积 Stem area/mm2 | 茎粗 Stem circumference/mm |
|---|---|---|---|---|---|---|
| WT | 6.15±1.06aa | 8.35±0.64aa | 0.25±0.04aa | 11±1.00aa | 0.62±0.01aa | 2.79±0.03aa |
| ZmSTART1-OE1 | 9.4±0.28AA | 6.15±0.47AA | 0.35±0.05AA | 26.7±1.00AA | 0.67±0.11aa | 2.89±0.05aa |
| ZmSTART1-OE2 | 8.8±0.11AA | 5.87±0.24AA | 0.31±0.08Aa | 22.5±1.87AA | 0.63±0.13aa | 2.81±0.17aa |
| ZmSTART1-OE3 | 8.8±0.23AA | 5.15±0.33AA | 0.28±0.07aa | 18.6±1.65AA | 0.62±0.07aa | 2.79±0.13aa |
Table 1 Statistical analysis of morphological indexes
类型 Type | 真叶面积 True leaf area/mm2 | 子叶面积 Cotyledon area/mm2 | 叶柄长 Petiole length/cm | 株高 Plant height/cm | 茎面积 Stem area/mm2 | 茎粗 Stem circumference/mm |
|---|---|---|---|---|---|---|
| WT | 6.15±1.06aa | 8.35±0.64aa | 0.25±0.04aa | 11±1.00aa | 0.62±0.01aa | 2.79±0.03aa |
| ZmSTART1-OE1 | 9.4±0.28AA | 6.15±0.47AA | 0.35±0.05AA | 26.7±1.00AA | 0.67±0.11aa | 2.89±0.05aa |
| ZmSTART1-OE2 | 8.8±0.11AA | 5.87±0.24AA | 0.31±0.08Aa | 22.5±1.87AA | 0.63±0.13aa | 2.81±0.17aa |
| ZmSTART1-OE3 | 8.8±0.23AA | 5.15±0.33AA | 0.28±0.07aa | 18.6±1.65AA | 0.62±0.07aa | 2.79±0.13aa |
Fig. 1 Structure analysis of ZmSTART1A: Schematic diagram of the domain in ZmSTART1 protein. B: Schematic diagram of the exons and introns in ZmSTART1 gene. C: The tertiary structure of ZmSTART1
Fig. 3 Expressions of ZmSTART1 in different tissues of maizeV1: 1 true leaf development stage. V3: 3 true leaf development stage. V5: 5 true leaf development stage. V7: 7 true leaf development stage. R1: Silking stage of maize. Different lowercase letters indicate a significant difference ≤0.05. The same below
| 类型 | 维管束个数 | 子叶二级叶脉 | 真叶二级叶脉数 | 真叶三级叶脉数 | 真叶四级叶脉数 | 子叶脉间区域 |
|---|---|---|---|---|---|---|
| Type | No. of vascular bundles | Cotyledon vein/Veins | Total number of secondary veins in true leaves | Total number of tertiary veins in true leaves | Total number of fourth-order veins of true leaves | Region between veins of cotyledons |
| WT | 6aa | 5±1aa | 12±1aa | 12±1aa | 0aa | 5±1aa |
| ZmSTART1-OE1 | 7±1Aa | 7±1AA | 17±2AA | 37±7AA | 4±1AA | 7±1AA |
| ZmSTART1-OE2 | 7±1Aa | 7±1AA | 16±2AA | 33±8AA | 3±1AA | 6±7Aa |
| ZmSTART1-OE3 | 6±1aa | 6±1Aa | 15±2Aa | 30±8AA | 2±1AA | 5±7aa |
Table 2 Phenotype data statistics of superficial veins and vascular bundles
| 类型 | 维管束个数 | 子叶二级叶脉 | 真叶二级叶脉数 | 真叶三级叶脉数 | 真叶四级叶脉数 | 子叶脉间区域 |
|---|---|---|---|---|---|---|
| Type | No. of vascular bundles | Cotyledon vein/Veins | Total number of secondary veins in true leaves | Total number of tertiary veins in true leaves | Total number of fourth-order veins of true leaves | Region between veins of cotyledons |
| WT | 6aa | 5±1aa | 12±1aa | 12±1aa | 0aa | 5±1aa |
| ZmSTART1-OE1 | 7±1Aa | 7±1AA | 17±2AA | 37±7AA | 4±1AA | 7±1AA |
| ZmSTART1-OE2 | 7±1Aa | 7±1AA | 16±2AA | 33±8AA | 3±1AA | 6±7Aa |
| ZmSTART1-OE3 | 6±1aa | 6±1Aa | 15±2Aa | 30±8AA | 2±1AA | 5±7aa |
Fig. 7 Phenotype of the of ZmSTART1-overexpressed transgenic A.thaliana leaf veinA and B: The cotyledon and true leaf veins of wild type (A) and ZmSTART1-overexpressed transgenic Arabidopsis (B) respectively. C and D: The true leaf veins at all levels of wild type (C) and ZmSTART1-overexpressed transgenic Arabidopsis (D) respectively
Fig. 8 Stem cross seetional microstructure of transgenie A. thaliana overexpressing ZmSTART1A and B: Stem cross seetional microstructure of wild type (A) and ZmSTART1-overexpressed transgenic Arabidopsis (B) respectively. C and D: The vascular bundle of wild type (C) and ZmSTART1-overexpressed transgenic Arabidopsis (D) respectively
| 1 | Liao SY, Yan J, Xing HK, et al. Genetic basis of vascular bundle variations in rice revealed by genome-wide association study [J]. Plant Sci, 2021, 302: 110715. |
| 2 | Zheng YX, Hou P, Zhu LY, et al. Genome-wide association study of vascular bundle-related traits in maize stalk [J]. Front Plant Sci, 2021, 12: 699486. |
| 3 | Du Q, Wang HZ. The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation [J]. Plant Signal Behav, 2015, 10(10): e1078955. |
| 4 | McConnell JR, Emery J, Eshed Y, et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots [J]. Nature, 2001, 411(6838): 709-713. |
| 5 | Zhong RQ, Ye ZH. Amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels [J]. Plant Cell Physiol, 2004, 45(4): 369-385. |
| 6 | Fei C, Geng X, Xu ZJ, et al. Multiple areas investigation reveals the genes related to vascular bundles in rice [J]. Rice (N Y), 2019, 12(1): 17. |
| 7 | Fujita D, Trijatmiko KR, Tagle AG, et al. NAL1 allele from a rice Landrace greatly increases yield in modern indica cultivars [J]. Proc Natl Acad Sci USA, 2013, 110(51): 20431-20436. |
| 8 | Qi J, Qian Q, Bu QY, et al. Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport [J]. Plant Physiol, 2008, 147(4): 1947-1959. |
| 9 | Terao T, Nagata K, Morino K, et al. A gene controlling the number of primary Rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice [J]. Theor Appl Genet, 2010, 120(5): 875-893. |
| 10 | Trieu AT, Burleigh SH, Kardailsky IV, et al. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium [J]. Plant J, 2000, 22(6): 531-541. |
| 11 | Tsujishita Y, Hurley JH. Structure and lipid transport mechanism of a StAR-related domain [J]. Nat Struct Biol, 2000, 7(5): 408-414. |
| 12 | Clark BJ, Wells J, King SR, et al. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR) [J]. J Biol Chem, 1994, 269(45): 28314-28322. |
| 13 | Waterman MR. A rising StAR: an essential role in cholesterol transport [J]. Science, 1995, 267(5205): 1780-1781. |
| 14 | Stocco DM. An update on the mechanism of action of the Steroidogenic Acute Regulatory (StAR) protein [J]. Exp Clin Endocrinol Diabetes, 1999, 107(4): 229-235. |
| 15 | de Brouwer APM, Westerman J, Kleinnijenhuis A, et al. Clofibrate-induced relocation of phosphatidylcholine transfer protein to mitochondria in endothelial cells [J]. Exp Cell Res, 2002, 274(1): 100-111. |
| 16 | Garajová K, Zimmermann M, Petrenčáková M, et al. The molten-globule residual structure is critical for reflavination of glucose oxidase [J]. Biophys Chem, 2017, 230: 74-83. |
| 17 | Soccio RE, Adams RM, Maxwell KN, et al. Differential gene regulation of StarD4 and StarD5 cholesterol transfer proteins. Activation of StarD4 by sterol regulatory element-binding protein-2 and StarD5 by endoplasmic reticulum stress [J]. J Biol Chem, 2005, 280(19): 19410-19418. |
| 18 | LaVoie HA, Whitfield NE, Shi B, et al. STARD6 is expressed in steroidogenic cells of the ovary and can enhance de novo steroidogenesis [J]. Exp Biol Med, 2014, 239(4): 430-435. |
| 19 | Al Haddad M, El-Rif R, Hanna S, et al. Differential regulation of rho GTPases during lung adenocarcinoma migration and invasion reveals a novel role of the tumor suppressor StarD13 in invadopodia regulation [J]. Cell Commun Signal, 2020, 18(1): 144. |
| 20 | Prigge MJ, Otsuga D, Alonso JM, et al. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development [J]. Plant Cell, 2005, 17(1): 61-76. |
| 21 | Rao RP, Yuan CQ, Allegood JC, et al. Ceramide transfer protein function is essential for normal oxidative stress response and lifespan [J]. Proc Natl Acad Sci U S A, 2007, 104(27): 11364-11369. |
| 22 | Alpy F, Tomasetto C. Give lipids a START: the StAR-related lipid transfer (START) domain in mammals [J]. J Cell Sci, 2005, 118(Pt 13): 2791-2801. |
| 23 | Byrne ME. Shoot meristem function and leaf polarity: the role of class III HD-ZIP genes [J]. PLoS Genet, 2006, 2(6): e89. |
| 24 | Baima S, Possenti M, Matteucci A, et al. The Arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems [J]. Plant Physiol, 2001, 126(2): 643-655. |
| [1] | WANG Tao, HU She-wei, ZHANG Yu, DENG Wen-wen, SHANG Chun-yuan, WANG Wan-yi. Research Progress in Starch Biosynthesis and Regulatory Factors in Maize Kernel [J]. Biotechnology Bulletin, 2025, 41(3): 1-13. |
| [2] | XING Li-nan, ZHANG Yan-fang, GE Ming-ran, ZHAO Ling-min, CHEN Yan, HUO Xiu-wen. Analysis of DoWRKY40 Gene Expression Characteristics and Screening of Interacting Proteins in Yam [J]. Biotechnology Bulletin, 2024, 40(8): 118-128. |
| [3] | HU Jin-jin, LI Su-zhen, MA Xu-hui, LIU Xiao-qing, XIE Shan-shan, JIANG Hai-yang, CHEN Ru-mei. Regulation of Maize Anthocyanin Biosynthesis Metabolism [J]. Biotechnology Bulletin, 2024, 40(6): 34-44. |
| [4] | SUN Ya-nan, WANG Chun-xue, WANG Xin, DU Bing-hai, LIU Kai, WANG Cheng-qiang. Biocontrol Characteristics of Bacillus atrophaeus CNY01 and Its Salt-resistant and Growth-promoting Effect on Maize Seedling [J]. Biotechnology Bulletin, 2024, 40(5): 248-260. |
| [5] | WANG Jia-wei, LI Chen, LIU Jian-li, ZHOU Shi-jie, YI Jia-min, YANG Jin-yuan, KANG Peng. Effects of Endophytic Fungal Inoculation on the Seedling Growth of Silage Maize [J]. Biotechnology Bulletin, 2024, 40(4): 189-202. |
| [6] | ZHANG Yi-heng, LIU Jia-zheng, WANG Xue-chen, SUN Zheng-zhe, XUE Ya-jun, WANG Pei, HAN Hua, ZHENG Hong-wei, LI Xiao-juan. Dynamic Changes of Arabidopsis Endoplasmic Reticulum Based on Enhanced Super-resolution Images [J]. Biotechnology Bulletin, 2024, 40(4): 67-76. |
| [7] | HU Yi-wa, CHEN Lu. Research Advance and Applications in Maize Wild Relatives Genomes [J]. Biotechnology Bulletin, 2024, 40(3): 14-24. |
| [8] | YIN Zi-wei, HONG Yu. Study on the Effect of Rhodococcus rhodochrous NB1 on the Tolerance to Salt and Growth-promoting of Maize and Its Whole Genome [J]. Biotechnology Bulletin, 2024, 40(12): 193-207. |
| [9] | TIAN Jin, ZHANG Yue-qiu, ZHANG Hua, CHEN Zi-yan, TIAN Lu, WANG Hao-qian, GAO Fang-rui, LIANG Jin-gang, CHEN Hong. Specific Qualitative PCR Detection Method for Transgenic Maize Zheda Ruifeng 8 [J]. Biotechnology Bulletin, 2024, 40(12): 45-52. |
| [10] | CHANG Lu-yin, WANG Zhong-hua, LI Feng-min, GAO Zi-yuan, ZHANG Hui-hong, WANG Yi, LI Fang, HAN Yan-lai, JIANG Ying. Screening Multi-functional Rhizobacteria from Maize Rhizosphere and Their Ehancing Effects on Winter Wheat-Summer Maize Rotation System [J]. Biotechnology Bulletin, 2024, 40(1): 231-242. |
| [11] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
| [12] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
| [13] | LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry [J]. Biotechnology Bulletin, 2023, 39(8): 4-10. |
| [14] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
| [15] | LIU Yue-e, XU Tian-jun, CAI Wan-tao, LYU Tian-fang, ZHANG Yong, XUE Hong-he, WANG Rong-huan, ZHAO Jiu-ran. Current Status and Prospects of Maize Super High Yield Research in China [J]. Biotechnology Bulletin, 2023, 39(8): 52-61. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||