Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (8): 255-266.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0013
KANG Qin1(
), WANG Xia1, SHEN Ming-yang1, XU Jing-tian1, CHEN Shi-lan1, LIAO Ping-yang1, XU Wen-zhi2, WU Wei1, XU Dong-bei1(
)
Received:2025-01-08
Online:2025-08-26
Published:2025-08-14
Contact:
XU Dong-bei
E-mail:1787482623@qq.com;xudongbei2006@126.com
KANG Qin, WANG Xia, SHEN Ming-yang, XU Jing-tian, CHEN Shi-lan, LIAO Ping-yang, XU Wen-zhi, WU Wei, XU Dong-bei. Cloning and Expression Analysis of the UV-B Receptor Gene McUVR8 in Mentha canadensis L.[J]. Biotechnology Bulletin, 2025, 41(8): 255-266.
| 引物名称 Primer name | 引物序列 Primer sequence (5′‒3′) | 引物用途 Application |
|---|---|---|
| McUVR8-F | GAGAGAGATGGCCGACGAG | 基因克隆 |
| McUVR8-R | CTCAGATCCTCATTCTTTTTACGTC | |
| McUVR8-GFP-F | CGGTACCCGGGGATCCATGGCCGACGAGGGGCA | 蛋白定位 |
| McUVR8-GFP-R | TGCTCACCATGTCGACGATCCTCATTCTTTTTACGTCAG | |
| qMcUVR8-F | GGCAGTGACGACTGATGGAA | 表达分析 |
| qMcUVR8-R | GCTGACCATTGGTACCCCTT | |
| β-actin-F | TGGAGAAAATATGGACAGAAAGTTG | 表达分析 |
| β-actin-R | CAGAAGAAGTTACTGAGTTGGGC | |
| BD-McUVR-F | GGAGGACCTGCATATGATGGCCGACGAGGGGCA | 蛋白互作 |
| BD-McUVR-R | GGATCCCCGGGAATTCTCAGATCCTCATTCTTTTTACGT |
Table 1 Information of primers used in this study
| 引物名称 Primer name | 引物序列 Primer sequence (5′‒3′) | 引物用途 Application |
|---|---|---|
| McUVR8-F | GAGAGAGATGGCCGACGAG | 基因克隆 |
| McUVR8-R | CTCAGATCCTCATTCTTTTTACGTC | |
| McUVR8-GFP-F | CGGTACCCGGGGATCCATGGCCGACGAGGGGCA | 蛋白定位 |
| McUVR8-GFP-R | TGCTCACCATGTCGACGATCCTCATTCTTTTTACGTCAG | |
| qMcUVR8-F | GGCAGTGACGACTGATGGAA | 表达分析 |
| qMcUVR8-R | GCTGACCATTGGTACCCCTT | |
| β-actin-F | TGGAGAAAATATGGACAGAAAGTTG | 表达分析 |
| β-actin-R | CAGAAGAAGTTACTGAGTTGGGC | |
| BD-McUVR-F | GGAGGACCTGCATATGATGGCCGACGAGGGGCA | 蛋白互作 |
| BD-McUVR-R | GGATCCCCGGGAATTCTCAGATCCTCATTCTTTTTACGT |
Fig. 1 McUVR8 cloning and protein structure analysisA: PCR amplification of McUVR8 (Red boxes and arrows denote the bands corresponding to the target genes. M: DNA-marker). B: Secondary structure prediction of McUVR8 (Blue: α-helix; purple: extended strand; orange: random coil). C: Tertiary structure prediction of McUVR8 (Red: extended strand; blue: random coil. Number 1‒7 indicate the lamellar structure consisting of seven WD40)
Fig. 2 Alignment of the amino acid sequences between McUVR8 and other plant UVR8 proteinsThe blue vertical lines indicate the seven WD40 structures; the green underline indicates the core structural domain of RCC1, and the red underlines indicate the C27 and C17 domains, respectively
Fig. 3 Motif analysis of UVR8 protein in different plantsConserved motif analysis of M. canadensis McUVR8 with homologous UVR8 proteins from 19 other species, the different species listed correspond to the 19 species in Fig. 2. The scale below this figure indicates amino acid sequence positions
Fig. 4 Phylogenetic tree analysis of UVR8 gene in different plantsPurple circles indicate M. canadensisMcUVR8, and green circles indicate the other 19 homologous UVR8 gene
Fig. 6 Tissue and phyllotaxis expression analysis of McUVR8 geneA: Expressions of McUVR8 in the root, stem, leaf, flower, bud, apical shoot of M. canadensis. B: Relative expressions of McUVR8 in the leaves at different positions. Leaf 1-leaf 8: The first to eighth leaf morphologically from top to bottom. Data are mean ± SE of 3 biological replicates, ANOVA is performed using Duncan's test, lowercase letters indicate significant differences at the 0.05 level, the same below
Fig. 7 McUVR8 gene in the leaves and roots in response to hormone and stress treatmentsExpression analysis of McUVR8 in the leaves of M. canadensis treated with MeJA (A), ABA (C), drought (E), and NaCl (G). Expression analysis of McUVR8 in the roots of M. canadensis treated with MeJA (B), ABA (D), drought (F), and NaCl (H)
Fig. 8 Expression profiles of McUVR8 gene in the leaves and roots in response to heavy metal or aluminum stressExpression analysis of McUVR8 in the leaves of M. canadensis treated with CdCl2 (A), CuCl2 (C), and AlCl3(E). Expression analysis of McUVR8 in the roots of M. canadensis treated with CdCl2 (B), CuCl2 (D), and AlCl3 (F)
| [1] | Soni S, Jha AB, Dubey RS, et al. Application of nanoparticles for enhanced UV-B stress tolerance in plants [J]. Plant Nano Biol, 2022, 2: 100014. |
| [2] | 钱珊珊, 侯学文. 植物UV-B生理效应的分子机制研究进展 [J]. 植物生理学报, 2011, 47(11): 1039-1046. |
| Qian SS, Hou XW. Progress of molecular mechanisms of plant UV-B physiological effects [J]. Plant Physiol J, 2011, 47(11): 1039-1046. | |
| [3] | Dai YJ, Li MH, Li HH, et al. Phytohormone-regulated UV-B photomorphogenesis and acclimation [J]. Environ Exp Bot, 2024, 224: 105830. |
| [4] | Dolzhenko Y, Bertea CM, Occhipinti A, et al. UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha x piperita L.) [J]. J Photochem Photobiol B, 2010, 100(2): 67-75. |
| [5] | 吴能表, 罗红丽, 马红群, 等. UV-B辐射对薄荷药用成分质量分数的影响 [J]. 西南大学学报: 自然科学版, 2012, 34(6): 1-5. |
| Wu NB, Luo HL, Ma HQ, et al. Effects of enhanced UV-B radiation on amino acid and secondary metabolite contents in Mentha piperita L [J]. J Southwest Univ Nat Sci Ed, 2012, 34(6): 1-5. | |
| [6] | Jiao J, Xu XJ, Lu Y, et al. Identification of genes associated with biosynthesis of bioactive flavonoids and taxoids in Taxus cuspidata Sieb. et Zucc. plantlets exposed to UV-B radiation [J]. Gene, 2022, 823: 146384. |
| [7] | Kliebenstein DJ, Lim JE, Landry LG, et al. Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1 [J]. Plant Physiol, 2002, 130(1): 234-243. |
| [8] | 王丽霞. 植物紫外光受体UVR8介导UV-B信号转导的分子机制研究 [D]. 武汉: 华中农业大学, 2023. |
| Wang LX. Molecular mechanism of UV-B signal transduction mediated by plant ultraviolet receptor UVR8 [D]. Wuhan: Huazhong Agricultural University, 2023. | |
| [9] | Lin L, Dong HX, Yang GQ, et al. The C-terminal 17 amino acids of the photoreceptor UVR8 is involved in the fine-tuning of UV-B signaling [J]. J Integr Plant Biol, 2020, 62(9): 1327-1340. |
| [10] | Wang LX, Wang YD, Chang HF, et al. RUP2 facilitates UVR8 redimerization via two interfaces [J]. Plant Commun, 2023, 4(1): 100428. |
| [11] | Wu D, Hu Q, Yan Z, et al. Structural basis of ultraviolet-B perception by UVR8 [J]. Nature, 2012, 484(7393): 214-219. |
| [12] | Li C, Du JC, Xu HN, et al. UVR8-TCP4-LOX2 module regulates UV-B tolerance in Arabidopsis [J]. J Integr Plant Biol, 2024, 66(5): 897-908. |
| [13] | Fernández MB, Lamattina L, Cassia R. Functional analysis of the UVR8 photoreceptor from the monocotyledonous Zea mays [J]. Plant Growth Regul, 2020, 92(2): 307-318. |
| [14] | Liu W, Jenkins GI. Recent advances in UV-B signalling: interaction of proteins with the UVR8 photoreceptor [J]. J Exp Bot, 2025, 76(3): 873-881. |
| [15] | Fang F, Lin L, Zhang QW, et al. Mechanisms of UV-B light-induced photoreceptor UVR8 nuclear localization dynamics [J]. New Phytol, 2022, 236(5): 1824-1837. |
| [16] | Liang T, Yang Y, Liu HT. Signal transduction mediated by the plant UV-B photoreceptor UVR8 [J]. New Phytol, 2019, 221(3): 1247-1252. |
| [17] | Yang Y, Liang T, Zhang LB, et al. UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis [J]. Nat Plants, 2018, 4(2): 98-107. |
| [18] | Yang Y, Zhang LB, Chen P, et al. UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development [J]. EMBO J, 2020, 39(2): e101928. |
| [19] | 杨睿, 陈炫好, 李晋, 等. 薄荷化学成分及药理活性研究进展 [J]. 天津中医药大学学报, 2022, 41(1): 4-13. |
| Yang R, Chen XH, Li J, et al. Research development of Menthae Haplocalycis Herba on chemical composition and pharmacological activity [J]. J Tianjin Univ Tradit Chin Med, 2022, 41(1): 4-13. | |
| [20] | Li HZ, Yang L, Bai JQ, et al. The complete chloroplast genome sequence of Mentha canadensis (Labiatae), a traditional Chinese herbal medicine [J]. Mitochondrial DNA B Resour, 2019, 5(1): 55-56. |
| [21] | 于红卫. 药食同源——山茱萸 [J]. 河南农业, 2024(15): 2. |
| Yu HW. The homology of medicine and food-Cornus officinalis [J]. Agric Henan, 2024(15): 2. | |
| [22] | Zhao H, Ren S, Yang H, et al. Peppermint essential oil: its phytochemistry, biological activity, pharmacological effect and application [J]. Biomed Pharmacother, 2022, 154: 113559. |
| [23] | An X, Wan JQ, Jiang H, et al. Transcriptome analysis of transcription factors and enzymes involved in monoterpenoid biosynthesis in different chemotypes of Mentha haplocalyx Briq [J]. PeerJ, 2023, 11: e14914. |
| [24] | 李吉莹, 黄凤娇. 基于中药材种植中存在的问题及解决方法探析 [J]. 农业开发与装备, 2024(6): 83-85. |
| Li JY, Huang FJ. Based on the problems and solutions in the cultivation of Chinese herbal medicines [J]. Agric Dev Equip, 2024(6): 83-85. | |
| [25] | 王小艳. 中药材种植中存在的问题及解决方法探析 [J]. 农业技术与装备, 2021(8): 61-62. |
| Wang XY. Problems and solutions in the planting of traditional Chinese medicine [J]. Agric Technol Equip, 2021(8): 61-62. | |
| [26] | 杜选香, 王自梁, 杨碧娟, 等. 中药材重金属超标概况 [J]. 云南民族大学学报: 自然科学版, 2025, 34(3): 303-312. |
| Du XX, Wang ZL, Yang BJ, et al. General situation of heavy metals exceeding the standard in Chinese herbal medicines [J]. China Ind Econ, 2025, 34(3): 303-312. | |
| [27] | 王福, 陈士林, 刘友平, 等. 我国中药材种植产业进展与展望 [J]. 中国现代中药, 2023, 25(6): 1163-1171. |
| Wang F, Chen SL, Liu YP, et al. Advances and prospects of Chinese herbal medicine planting industry in China [J]. Mod Chin Med, 2023, 25(6): 1163-1171. | |
| [28] | 康琴, 唐伟林, 吴双玙, 等. 薄荷Ca2+传感器基因McCBL4的克隆及表达模式分析 [J]. 西南农业学报, 2024, 37(11): 2381-2391. |
| Kang Q, Tang WL, Wu SY, et al. Cloning and expression pattern analysis of Ca2+ sensor gene McCBL4 in Mentha canadensis L [J]. Southwest China J Agric Sci, 2024, 37(11): 2381-2391. | |
| [29] | Xu DB, Gao SQ, Ma YN, et al. The G-protein β subunit AGB1 promotes hypocotyl elongation through inhibiting transcription activation function of BBX21 in Arabidopsis [J]. Mol Plant, 2017, 10(9): 1206-1223. |
| [30] | Ahkami A, Johnson SR, Srividya N, et al. Multiple levels of regulation determine monoterpenoid essential oil compositional variation in the mint family [J]. Mol Plant, 2015, 8(1): 188-191. |
| [31] | Homma F, Huang J, van der Hoorn RAL. AlphaFold-Multimer predicts cross-Kingdom interactions at the plant-pathogen interface [J]. Nat Commun, 2023, 14(1): 6040. |
| [32] | 钱崇祯. 拟南芥UV-B光受体亚细胞定位与功能研究 [D]. 厦门: 厦门大学, 2019. |
| Qian CZ. Subcellular localization and function of UV-B photoreceptors in Arabidopsis thaliana [D]. Xiamen: Xiamen University, 2019. | |
| [33] | Tossi VE, Regalado JJ, Iannicelli J, et al. Beyond Arabidopsis: differential UV-B response mediated by UVR8 in diverse species [J]. Front Plant Sci, 2019, 10: 780. |
| [34] | Mao K, Wang LN, Li YY, et al. Molecular cloning and functional analysis of UV RESISTANCE LOCUS 8 (PeUVR8) from Populus euphratica [J]. PLoS One, 2015, 10(7): e0132390. |
| [35] | Li XY, Ma MH, Shao WX, et al. Molecular cloning and functional analysis of a UV-B photoreceptor gene, BpUVR8 (UV Resistance Locus 8), from birch and its role in ABA response [J]. Plant Sci, 2018, 274: 294-308. |
| [36] | 李晓一, 詹亚光, 娄晓瑞, 等. 白桦BpUVR8基因的序列与表达模式分析 [J]. 植物生理学报, 2016, 52(5): 685-692. |
| Li XY, Zhan YG, Lou XR, et al. The sequence and expression analysis of BpUVR8 gene in birch [J]. Plant Physiol J, 2016, 52(5): 685-692. | |
| [37] | Li HR, Li YX, Deng H, et al. Tomato UV-B receptor SlUVR8 mediates plant acclimation to UV-B radiation and enhances fruit chloroplast development via regulating SlGLK2 [J]. Sci Rep, 2018, 8(1): 6097. |
| [38] | 向花, 吕桂珍, 李韶山. UV-B预处理对拟南芥uvr8-2突变体响应干旱胁迫的影响 [J]. 华南师范大学学报: 自然科学版, 2020, 52(6): 67-73. |
| Xiang H, Lü GZ, Li SS. The effect of UV-B pretreatment on the drought response of Arabidopsis uvr8-2 mutants [J]. J South China Norm Univ Nat Sci Ed, 2020, 52(6): 67-73. | |
| [39] | Zhang N, Xu K, Liu SY, et al. RNA polymerase III-dependent BoNR8 and AtR8 lncRNAs contribute to hypocotyl elongation in response to light and abscisic acid [J]. Plant Cell Physiol, 2023, 64(6): 646-659. |
| [40] | Fasano R, Gonzalez N, Tosco A, et al. Role of Arabidopsis UV RESISTANCE LOCUS 8 in plant growth reduction under osmotic stress and low levels of UV-B [J]. Mol Plant, 2014, 7(5): 773-791. |
| [41] | Zeng DS, Lv JQ, Li X, et al. The Arabidopsis blue-light photoreceptor CRY2 is active in darkness to inhibit root growth [J]. Cell, 2025, 188(1): 60-76.e20. |
| [42] | García-Sánchez F, Simón-Grao S, Martínez-Nicolás JJ, et al. Multiple stresses occurring with boron toxicity and deficiency in plants [J]. J Hazard Mater, 2020, 397: 122713. |
| [43] | Najmi A, Albratty M, Al-Rajab AJ, et al. Heavy metal contamination in leafy vegetables grown in jazan region of Saudi Arabia: assessment of possible human health hazards [J]. Int J Environ Res Public Health, 2023, 20(4): 2984. |
| [44] | 吴嘉煜, 米楠. 重金属对植物抗氧化酶影响研究进展 [J]. 浙江农业科学, 2022, 63(6): 1177-1181, 1304. |
| Wu JY, Mi N. Effect of heavy metals on antioxidant enzymes in plants [J]. J Zhejiang Agric Sci, 2022, 63(6): 1177-1181, 1304. | |
| [45] | Yin RH, Arongaus AB, Binkert M, et al. Two distinct domains of the UVR8 photoreceptor interact with COP1 to initiate UV-B signaling in Arabidopsis [J]. Plant Cell, 2015, 27(1): 202-213. |
| [46] | 李国良, 张鸿, 许泳清, 等. 植物紫外光受体UVR8的研究进展 [J]. 植物生理学报, 2015, 51(11): 1809-1814. |
| Li GL, Zhang H, Xu YQ, et al. Research progress in plant photoreceptor UVR8 [J]. Plant Physiol J, 2015, 51(11): 1809-1814. | |
| [47] | 陈慧泽, 牛靖蓉, 韩榕. 植物紫外光B受体UVR8的信号转导途径 [J]. 植物生理学报, 2021, 57(6): 1179-1188. |
| Chen HZ, Niu JR, Han R. Signal transduction pathways of plant ultraviolet B receptor UVR8 [J]. Plant Physiol J, 2021, 57(6): 1179-1188. | |
| [48] | Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3 [J]. Nature, 2024, 630(8016): 493-500. |
| [49] | Wang YD, Wang LX, Guan ZY, et al. Structural insight into UV-B-activated UVR8 bound to COP1 [J]. Sci Adv, 2022, 8(16): eabn3337. |
| [50] | Toby GG, Golemis EA. Using the yeast interaction trap and other two-hybrid-based approaches to study protein-protein interactions [J]. Methods, 2001, 24(3): 201-217. |
| [51] | He XH, Li JR, Shen SY, et al. AlphaFold3 versus experimental structures: assessment of the accuracy in ligand-bound G protein-coupled receptors [J]. Acta Pharmacol Sin, 2025, 46(4): 1111-1122. |
| [1] | LI Kai-jie, WU Yao, LI Dan-dan. Cloning of Gene CtbHLH128 in Safflower and Response Function Regulating Drought Stress [J]. Biotechnology Bulletin, 2025, 41(8): 234-241. |
| [2] | HUANG Shi-yu, TIAN Shan-shan, YANG Tian-wei, GAO Man-rong, ZHANG Shang-wen. Genome-wide Identification and Expression Pattern Analysis of WRI1 Gene Family in Erythropalum scandens [J]. Biotechnology Bulletin, 2025, 41(8): 242-254. |
| [3] | WANG Fang, QIAO Shuai, SONG Wei, CUI Peng-juan, LIAO An-zhong, TAN Wen-fang, YANG Song-tao. Genome-wide Identification of the IbNRT2 Gene Family and Its Expression in Sweet Potato [J]. Biotechnology Bulletin, 2025, 41(7): 193-204. |
| [4] | WEI Yu-jia, LI Yan, KANG Yu-han, GONG Xiao-nan, DU Min, TU Lan, SHI Peng, YU Zi-han, SUN Yan, ZHANG Kun. Cloning and Expression Analysis of the CrMYB4 Gene in Carex rigescens [J]. Biotechnology Bulletin, 2025, 41(7): 248-260. |
| [5] | XU Hui-zhen, SHANTWANA Ghimire, RAJU Kharel, YUE Yun, SI Huai-jun, TANG Xun. Analysis of the Potato SUMO E3 Ligase Gene Family and Cloning and Expression Pattern of StSIZ1 [J]. Biotechnology Bulletin, 2025, 41(6): 119-129. |
| [6] | PEI Jing-qi, ZHAO Meng-ran, HUANG Chen-yang, WU Xiang-li. Discovery and Verification of a Functional Gene Influencing the Growth and Development of Pleurotus ostreatus [J]. Biotechnology Bulletin, 2025, 41(6): 327-334. |
| [7] | LIU Xin, WANG Jia-wen, LI Jin-wei, MOU Ce, YANG Pan-pan, MING Jun, XU Lei-feng. Cloning and Expression Analysis of Three LdBBXs in Lilium davidii var. willmottiae [J]. Biotechnology Bulletin, 2025, 41(5): 186-196. |
| [8] | WANG Tian-xi, YANG Bing-song, PAN Rong-jun, GAI Wen-xian, LIANG Mei-xia. Identification of the Apple PLATZ Gene Family and Functional Study of the MdPLATZ9 Gene [J]. Biotechnology Bulletin, 2025, 41(4): 176-187. |
| [9] | SONG Jia-yi, SU Yun-li, ZHENG Xing-yan, XIA Wen-nian, YANG Dong-mei, HU Hui-zhen. Identification of the Snapdragon Expansin Gene Family and Screening of Its Genes Related to Resistance to Sclerotinia sclerotiorum [J]. Biotechnology Bulletin, 2025, 41(4): 227-242. |
| [10] | BAN Qiu-yan, ZHAO Xin-yue, CHI Wen-jing, LI Jun-sheng, WANG Qiong, XIA Yao, LIANG Li-yun, HE Wei, LI Ye-yun, ZHAO Guang-shan. Cloning of Phytochrome Interaction Factor CsPIF3a and Its Response to Light and Temperature Stress in Camellia sinensis [J]. Biotechnology Bulletin, 2025, 41(4): 256-265. |
| [11] | SONG Shu-yi, JIANG Kai-xiu, LIU Huan-yan, HUANG Ya-cheng, LIU Lin-ya. Identification of the TCP Gene Family in Actinidia chinensis var. Hongyang and Their Expression Analysis in Fruit [J]. Biotechnology Bulletin, 2025, 41(3): 190-201. |
| [12] | PENG Ting, LIN Ying, TAN Yuan-yuan, RAO Ying, HUANG Qin, ZHANG Wen-e, WANG Bo, TIAN Rui-feng, LIU Guo-feng. Cloning and Expression Analysis of AwANS Genes in Allium wallichii [J]. Biotechnology Bulletin, 2025, 41(3): 230-239. |
| [13] | XU Yuan-meng, MAO Jiao, WANG Meng-yao, WANG Shu, REN Jiang-ling, LIU Yu-han, LIU Si-chen, QIAO Zhi-jun, WANG Rui-yun, CAO Xiao-ning. Cloning and Expression Characteristics Analysis of Millet Genes PmDEP1 and PmEP3 [J]. Biotechnology Bulletin, 2025, 41(2): 150-162. |
| [14] | JIAO Xiao-yu, WU Qiong, LIU Dan-dan, SUN Ming-hui, RUAN Xu, WANG Lei-gang, WANG Wen-jie. Cloning and Functional Analysis of CsWAK8 Gene from Camellia sinensis during Cold Stress [J]. Biotechnology Bulletin, 2025, 41(2): 210-220. |
| [15] | KUANG Jian-hua, CHENG Zhi-peng, ZHAO Yong-jing, YANG Jie, CHEN Run-qiao, CHEN Long-qing, HU Hui-zhen. Expression Analysis of the GH3 Gene Family in Nelumbo nucifera underHormonal and Abiotic Stresses [J]. Biotechnology Bulletin, 2025, 41(2): 221-233. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||