Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (10): 253-263.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0265
Previous Articles Next Articles
QIN Wen-jun(
), XIONG Yan-jie(
), ZHAO Ran, MA Xiao-ran, YE Xiao-meng, SONG Jiang-hua(
)
Received:2025-03-12
Online:2025-10-26
Published:2025-10-28
Contact:
SONG Jiang-hua
E-mail:18855395519@163.com;jhsong@ahau.edu.cn
QIN Wen-jun, XIONG Yan-jie, ZHAO Ran, MA Xiao-ran, YE Xiao-meng, SONG Jiang-hua. Identification and Expression Analysis of the ARF Gene Family in Cabbage under Abiotic Stress[J]. Biotechnology Bulletin, 2025, 41(10): 253-263.
| 引物名称 Primer name | 序列 Sequence (5′-3′) |
|---|---|
| BoActin-QF | CCTCCGTCTTGACCTTGC |
| BoActin-QR | GTCTCCATCTCCTGCTCGT |
| BoARF3-F | TACCACTAACCTCTCCTCTGGG |
| BoARF3-R | CTTAACTACCTCGGTGGCTGTT |
| BoARF18-F | CTCAGGGACACATCGAGCAG |
| BoARF18-R | CGGTATCAACCTCCGCCTTT |
| BoARF20-F | ATTTCGAGGAACTGAGGGTGTC |
| BoARF20-R | AAGCTGTTCTATGTGCCCTTGA |
| BoARF22-F | AGCAACGAAGCGACTAACGA |
| BoARF22-R | CCCGGTTATCCATGTCTTTCTCA |
| BoARF28-F | GTCTTCCCCTGTTGGATGTGT |
| BoARF28-R | CAAAAGAGTCTCCAGCAACCA |
| BoARF29-F | AACAGCTACAGCCACATAAGCT |
| BoARF29-R | GATGTTTGTTGTGCCTGATGCT |
| BoARF30-F | AGGAACAAACGACCGAGACC |
| BoARF30-R | GGATTTCCACACACCATCAGG |
| BoARF33-F | AATCCTCATCCTCATGAAGTTACA |
| BoARF33-R | AAGAGGACCAGCACAAGCAT |
Table 1 Primers sequences in quantitative PCR
| 引物名称 Primer name | 序列 Sequence (5′-3′) |
|---|---|
| BoActin-QF | CCTCCGTCTTGACCTTGC |
| BoActin-QR | GTCTCCATCTCCTGCTCGT |
| BoARF3-F | TACCACTAACCTCTCCTCTGGG |
| BoARF3-R | CTTAACTACCTCGGTGGCTGTT |
| BoARF18-F | CTCAGGGACACATCGAGCAG |
| BoARF18-R | CGGTATCAACCTCCGCCTTT |
| BoARF20-F | ATTTCGAGGAACTGAGGGTGTC |
| BoARF20-R | AAGCTGTTCTATGTGCCCTTGA |
| BoARF22-F | AGCAACGAAGCGACTAACGA |
| BoARF22-R | CCCGGTTATCCATGTCTTTCTCA |
| BoARF28-F | GTCTTCCCCTGTTGGATGTGT |
| BoARF28-R | CAAAAGAGTCTCCAGCAACCA |
| BoARF29-F | AACAGCTACAGCCACATAAGCT |
| BoARF29-R | GATGTTTGTTGTGCCTGATGCT |
| BoARF30-F | AGGAACAAACGACCGAGACC |
| BoARF30-R | GGATTTCCACACACCATCAGG |
| BoARF33-F | AATCCTCATCCTCATGAAGTTACA |
| BoARF33-R | AAGAGGACCAGCACAAGCAT |
| 基因 Gene | 序列号 Sequence ID | 氨基酸 Amino acid (aa) | 分子质量 Molecular weight (kD) | 等电点 Isoelectric point | 亚细胞定位 Prediction of subcellular localization |
|---|---|---|---|---|---|
| BoARF1 | Bo2g161810.1 | 832 | 92.897 96 | 6.12 | Nucleus |
| BoARF2 | Bo9g076090.1 | 509 | 57.927 90 | 8.61 | Nucleus |
| BoARF3 | Bo6g081980.1 | 543 | 59.727 75 | 5.26 | Nucleus |
| BoARF4 | Bo7g114200.1 | 724 | 80.341 36 | 8.10 | Nucleus |
| BoARF5 | Bo8g097320.1 | 561 | 62.937 75 | 6.02 | Nucleus |
| BoARF6 | Bo4g136370.1 | 820 | 90.502 65 | 5.96 | Nucleus |
| BoARF7 | Bo8g068380.1 | 1 020 | 113.085 42 | 6.20 | Nucleus |
| BoARF8 | Bo2g023110.1 | 1 174 | 129.795 23 | 6.36 | Nucleus |
| BoARF9 | Bo8g069820.1 | 846 | 93.808 66 | 5.60 | Nucleus |
| BoARF10 | Bo7g109250.1 | 631 | 71.227 49 | 6.15 | Nucleus |
| BoARF11 | Bo6g099440.1 | 777 | 87.012 40 | 5.92 | Nucleus |
| BoARF12 | Bo5g062810.1 | 900 | 99.001 81 | 5.87 | Nucleus |
| BoARF13 | Bo1g037360.1 | 609 | 69.110 45 | 5.95 | Nucleus |
| BoARF14 | Bo1g090350.1 | 662 | 73.478 58 | 5.97 | Nucleus |
| BoARF15 | Bo3g108130.1 | 848 | 94.489 99 | 6.43 | Nucleus |
| BoARF16 | Bo6g121520.1 | 557 | 60.514 57 | 5.41 | Mitochondrion, nucleus |
| BoARF17 | Bo7g067390.1 | 543 | 62.129 71 | 6.69 | Nucleus |
| BoARF18 | Bo9g014770.1 | 829 | 92.567 60 | 6.34 | Nucleus |
| BoARF19 | Bo3g039330.1 | 563 | 63.229 87 | 6.07 | Nucleus |
| BoARF20 | Bo9g007780.1 | 491 | 56.626 32 | 6.98 | Nucleus |
| BoARF21 | Bo1g014600.1 | 651 | 71.906 42 | 7.59 | Nucleus |
| BoARF22 | Bo4g071620.1 | 703 | 77.829 81 | 6.56 | Nucleus |
| BoARF23 | Bo9g143570.1 | 769 | 85.178 70 | 6.29 | Nucleus |
| BoARF24 | Bo4g008150.1 | 583 | 65.667 65 | 6.88 | Nucleus |
| BoARF25 | Bo5g027930.1 | 880 | 97.244 45 | 5.84 | Nucleus |
| BoARF26 | Bo4g182310.1 | 594 | 65.639 33 | 6.73 | Nucleus |
| BoARF27 | Bo4g041340.1 | 608 | 66.607 46 | 6.52 | Nucleus |
| BoARF28 | Bo9g055750.1 | 480 | 54.965 61 | 6.41 | Nucleus |
| BoARF29 | Bo9g151530.1 | 1 174 | 129.754 34 | 6.63 | Nucleus |
| BoARF30 | Bo4g083590.1 | 682 | 76.161 90 | 6.29 | Nucleus |
| BoARF31 | Bo3g135810.1 | 630 | 70.641 54 | 5.85 | Nucleus |
| BoARF32 | Bo7g062090.1 | 860 | 95.380 51 | 5.71 | Nucleus |
| BoARF33 | Bo3g148950.1 | 849 | 93.716 25 | 6.11 | Nucleus |
| BoARF34 | Bo5g027250.1 | 1052 | 116.626 96 | 6.19 | Nucleus |
| BoARF35 | Bo2g024860.1 | 606 | 68.317 08 | 9.51 | Nucleus |
| BoARF36 | Bo4g039540.1 | 548 | 62.465 99 | 6.01 | Nucleus |
Table 2 Physicochemical properties of the Brassica oleracea ARF gene family and location prediction of genes on cells
| 基因 Gene | 序列号 Sequence ID | 氨基酸 Amino acid (aa) | 分子质量 Molecular weight (kD) | 等电点 Isoelectric point | 亚细胞定位 Prediction of subcellular localization |
|---|---|---|---|---|---|
| BoARF1 | Bo2g161810.1 | 832 | 92.897 96 | 6.12 | Nucleus |
| BoARF2 | Bo9g076090.1 | 509 | 57.927 90 | 8.61 | Nucleus |
| BoARF3 | Bo6g081980.1 | 543 | 59.727 75 | 5.26 | Nucleus |
| BoARF4 | Bo7g114200.1 | 724 | 80.341 36 | 8.10 | Nucleus |
| BoARF5 | Bo8g097320.1 | 561 | 62.937 75 | 6.02 | Nucleus |
| BoARF6 | Bo4g136370.1 | 820 | 90.502 65 | 5.96 | Nucleus |
| BoARF7 | Bo8g068380.1 | 1 020 | 113.085 42 | 6.20 | Nucleus |
| BoARF8 | Bo2g023110.1 | 1 174 | 129.795 23 | 6.36 | Nucleus |
| BoARF9 | Bo8g069820.1 | 846 | 93.808 66 | 5.60 | Nucleus |
| BoARF10 | Bo7g109250.1 | 631 | 71.227 49 | 6.15 | Nucleus |
| BoARF11 | Bo6g099440.1 | 777 | 87.012 40 | 5.92 | Nucleus |
| BoARF12 | Bo5g062810.1 | 900 | 99.001 81 | 5.87 | Nucleus |
| BoARF13 | Bo1g037360.1 | 609 | 69.110 45 | 5.95 | Nucleus |
| BoARF14 | Bo1g090350.1 | 662 | 73.478 58 | 5.97 | Nucleus |
| BoARF15 | Bo3g108130.1 | 848 | 94.489 99 | 6.43 | Nucleus |
| BoARF16 | Bo6g121520.1 | 557 | 60.514 57 | 5.41 | Mitochondrion, nucleus |
| BoARF17 | Bo7g067390.1 | 543 | 62.129 71 | 6.69 | Nucleus |
| BoARF18 | Bo9g014770.1 | 829 | 92.567 60 | 6.34 | Nucleus |
| BoARF19 | Bo3g039330.1 | 563 | 63.229 87 | 6.07 | Nucleus |
| BoARF20 | Bo9g007780.1 | 491 | 56.626 32 | 6.98 | Nucleus |
| BoARF21 | Bo1g014600.1 | 651 | 71.906 42 | 7.59 | Nucleus |
| BoARF22 | Bo4g071620.1 | 703 | 77.829 81 | 6.56 | Nucleus |
| BoARF23 | Bo9g143570.1 | 769 | 85.178 70 | 6.29 | Nucleus |
| BoARF24 | Bo4g008150.1 | 583 | 65.667 65 | 6.88 | Nucleus |
| BoARF25 | Bo5g027930.1 | 880 | 97.244 45 | 5.84 | Nucleus |
| BoARF26 | Bo4g182310.1 | 594 | 65.639 33 | 6.73 | Nucleus |
| BoARF27 | Bo4g041340.1 | 608 | 66.607 46 | 6.52 | Nucleus |
| BoARF28 | Bo9g055750.1 | 480 | 54.965 61 | 6.41 | Nucleus |
| BoARF29 | Bo9g151530.1 | 1 174 | 129.754 34 | 6.63 | Nucleus |
| BoARF30 | Bo4g083590.1 | 682 | 76.161 90 | 6.29 | Nucleus |
| BoARF31 | Bo3g135810.1 | 630 | 70.641 54 | 5.85 | Nucleus |
| BoARF32 | Bo7g062090.1 | 860 | 95.380 51 | 5.71 | Nucleus |
| BoARF33 | Bo3g148950.1 | 849 | 93.716 25 | 6.11 | Nucleus |
| BoARF34 | Bo5g027250.1 | 1052 | 116.626 96 | 6.19 | Nucleus |
| BoARF35 | Bo2g024860.1 | 606 | 68.317 08 | 9.51 | Nucleus |
| BoARF36 | Bo4g039540.1 | 548 | 62.465 99 | 6.01 | Nucleus |
Fig. 5 Analysis of co-lineage of the ARF gene familyA: Co-lineage relationships of the ARF gene family. B: Co-lineage relationships between A. thaliana, B. rapa, B. oleracea. Bright lines indicate co-lineage gene pairs of the ARF gene family
Fig. 6 Expression analysis of cabbage ARF gene family members under abiotic stressA: Low-temperature stress. B: High-temperature stress. C: Salt stress. D: Drought stress. Error bars indicate standard errors of three biological replicates. The different lowercase letters indicate significant differences at the P<0.05 level
| [1] | Raza MA, Sohail H, Ahmad Hassan M, et al. Cold stress in Brassica vegetables: morpho-physiological and molecular responses underlying adaptive mechanism [J]. Sci Hortic, 2024, 329: 113002. |
| [2] | Zhang Y, Xu J, Li RF, et al. Plants’ response to abiotic stress: mechanisms and strategies [J]. Int J Mol Sci, 2023, 24(13): 10915. |
| [3] | Li YH, Han S, Qi YH. Advances in structure and function of auxin response factor in plants [J]. J Integr Plant Biol, 2023, 65(3): 617-632. |
| [4] | Gao ZY, Wu YZ, Li MZ, et al. The auxin response factor (ARF) gene family in Cyclocarya paliurus: genome-wide identification and their expression profiling under heat and drought stresses [J]. Physiol Mol Biol Plants, 2024, 30(6): 921-944. |
| [5] | Singh VK, Rajkumar MS, Garg R, et al. Genome-wide identification and co-expression network analysis provide insights into the roles of auxin response factor gene family in chickpea [J]. Sci Rep, 2017, 7(1): 10895. |
| [6] | Chandler JW. Auxin response factors [J]. Plant Cell Environ, 2016, 39(5): 1014-1028. |
| [7] | 孟思达, 聂晓雨, 叶云珠, 等. 植物ARF家族成员研究进展 [J]. 沈阳农业大学学报, 2025, 56(2): 160-168. |
| Meng SD, Nie XY, Ye YZ, et al. Research progress on members of the plant ARF family [J]. J Shenyang Agric Univ, 2025, 56(2): 160-168. | |
| [8] | Chen FQ, Zhang JQ, Ha X, et al. Genome-wide identification and expression analysis of the Auxin-Response factor (ARF) gene family in Medicago sativa under abiotic stress [J]. BMC Genomics, 2023, 24(1): 498. |
| [9] | Cancé C, Martin-Arevalillo R, Boubekeur K, et al. Auxin response factors are keys to the many auxin doors [J]. New Phytol, 2022, 235(2): 402-419. |
| [10] | Xu L, Wang DZ, Liu S, et al. Comprehensive atlas of wheat (Triticum aestivum L.) AUXIN RESPONSE FACTOR expression during male reproductive development and abiotic stress [J]. Front Plant Sci, 2020, 11: 586144. |
| [11] | Du LM, Bao CL, Hu TH, et al. SmARF8, a transcription factor involved in parthenocarpy in eggplant [J]. Mol Genet Genomics, 2016, 291(1): 93-105. |
| [12] | Song XY, Xiong YL, Kong XZ, et al. Roles of auxin response factors in rice development and stress responses [J]. Plant Cell Environ, 2023, 46(4): 1075-1086. |
| [13] | Wang ZF, Shang Q, Zhang WE, et al. Identification of ARF genes in Juglans sigillata Dode and analysis of their expression patterns under drought stress [J]. Mol Biol Rep, 2024, 51(1): 539. |
| [14] | Kang C, He SZ, Zhai H, et al. A sweetpotato auxin response factor gene (IbARF5) is involved in carotenoid biosynthesis and salt and drought tolerance in transgenic Arabidopsis [J]. Front Plant Sci, 2018, 9: 1307. |
| [15] | Jin LF, Yarra R, Zhou LX, et al. The auxin response factor (ARF) gene family in oil palm (Elaeis guineensis Jacq.): Genome-wide identification and their expression profiling under abiotic stresses [J]. Protoplasma, 2022, 259(1): 47-60. |
| [16] | Song SW, Hao LY, Zhao P, et al. Genome-wide identification, expression profiling and evolutionary analysis of auxin response factor gene family in potato (Solanum tuberosum group phureja) [J]. Sci Rep, 2019, 9(1): 1755. |
| [17] | Cui J, Li XY, Li JL, et al. Genome-wide sequence identification and expression analysis of ARF family in sugar beet (Beta vulgaris L.) under salinity stresses [J]. PeerJ, 2020, 8: e9131. |
| [18] | Matsui A, Ishida J, Morosawa T, et al. Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array [J]. Plant Cell Physiol, 2008, 49(8): 1135-1149. |
| [19] | Mistry J, Chuguransky S, Williams L, et al. Pfam: the protein families database in 2021 [J]. Nucleic Acids Res, 2021, 49(D1): D412-D419. |
| [20] | Chen CJ, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13(8): 1194-1202. |
| [21] | Feng SY, Li N, Chen HL, et al. Large-scale analysis of the ARF and Aux/IAA gene families in 406 horticultural and other plants [J]. Mol Hortic, 2024, 4(1): 13. |
| [22] | Remington DL, Vision TJ, Guilfoyle TJ, et al. Contrasting modes of diversification in the Aux/IAA and ARF gene families [J]. Plant Physiol, 2004, 135(3): 1738-1752. |
| [23] | Kumar R, Tyagi AK, Sharma AK. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development [J]. Mol Genet Genomics, 2011, 285(3): 245-260. |
| [24] | Wan SB, Li WL, Zhu YY, et al. Genome-wide identification, characterization and expression analysis of the auxin response factor gene family in Vitis vinifera [J]. Plant Cell Rep, 2014, 33(8): 1365-1375. |
| [25] | Xing HY, Pudake RN, Guo GG, et al. Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize [J]. BMC Genomics, 2011, 12: 178. |
| [26] | Mun JH, Yu HJ, Shin JY, et al. Auxin response factor gene family in Brassica rapa: genomic organization, divergence, expression, and evolution [J]. Mol Genet Genomics, 2012, 287(10): 765-784. |
| [27] | Okushima Y, Overvoorde PJ, Arima K, et al. Functional genomic analysis of the auxin response factor gene family members in Arabidopsis thaliana: unique and overlapping functions of arf7 and arf19 [J]. Plant Cell, 2005, 17(2): 444-463. |
| [28] | Wen J, Guo PC, Ke YZ, et al. The auxin response factor gene family in allopolyploid Brassica napus [J]. PLoS One, 2019, 14(4): e0214885. |
| [29] | Chen J, Wang SJ, Wu FL, et al. Genome-wide identification and functional characterization of auxin response factor (ARF) genes in eggplant [J]. Int J Mol Sci, 2022, 23(11): 6219. |
| [30] | Li WB, Chen FB, Wang YP, et al. Genome-wide identification and functional analysis of ARF transcription factors in Brassica juncea var. tumida [J]. PLoS One, 2020, 15(4): e0232039. |
| [31] | Hou QD, Qiu ZL, Wen Z, et al. Genome-wide identification of ARF gene family suggests a functional expression pattern during fruitlet abscission in Prunus avium L [J]. Int J Mol Sci, 2021, 22(21): 11968. |
| [32] | 卫聪聪, 江定, 吴根堃, 等. 甘蓝ARF基因家族的鉴定与生物信息学分析 [J]. 北方园艺, 2017(19): 16-24. |
| Wei CC, Jiang D, Wu GK, et al. Genome-wide identification and bioinformatics analysis of ARF gene family in Brassica oleracea [J]. North Hortic, 2017(19): 16-24. | |
| [33] | Wang DK, Pei KM, Fu YP, et al. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa) [J]. Gene, 2007, 394(1/2): 13-24. |
| [34] | Gechev T, Petrov V. Reactive oxygen species and abiotic stress in plants [J]. Int J Mol Sci, 2020, 21(20): 7433. |
| [35] | Zhang MJ, Xue YY, Xu S, et al. Identification of ARF genes in Cucurbita pepo L and analysis of expression patterns, and functional analysis of CpARF22 under drought, salt stress [J]. BMC Genomics, 2024, 25(1): 112. |
| [1] | LI Shan, MA Deng-hui, MA Hong-yi, YAO Wen-kong, YIN Xiao. Identification and Expression Analysis of SKP1 Gene Family in Grapevine (Vitis vinifera L.) [J]. Biotechnology Bulletin, 2025, 41(9): 147-158. |
| [2] | HUANG Guo-dong, DENG Yu-xing, CHENG Hong-wei, DAN Yan-nan, ZHOU Hui-wen, WU Lan-hua. Genome-wide Identification and Expression Analysis of the ZIP Gene Family in Soybean [J]. Biotechnology Bulletin, 2025, 41(9): 71-81. |
| [3] | GONG Hui-ling, XING Yu-jie, MA Jun-xian, CAI Xia, FENG Zai-ping. Identification of Laccase (LAC) Gene Family in Potato (Solanum tuberosum L.) and Its Expression Analysis under Salt Stresses [J]. Biotechnology Bulletin, 2025, 41(9): 82-93. |
| [4] | CHENG Ting-ting, LIU Jun, WANG Li-li, LIAN Cong-long, WEI Wen-jun, GUO Hui, WU Yao-lin, YANG Jing-fan, LAN Jin-xu, CHEN Sui-qing. Genome-wide Identification of the Chalcone Isomerase Gene Family in Eucommia ulmoides and Analysis of Their Expression Patterns [J]. Biotechnology Bulletin, 2025, 41(9): 242-255. |
| [5] | LI Yu-zhen, LI Meng-dan, ZHANG Wei, PENG Ting. Functional Study of RmEXPB2 Genein Rosa multiflora Based on the Identification of the Expansin Gene Family in Rosa sp. [J]. Biotechnology Bulletin, 2025, 41(9): 182-194. |
| [6] | CHENG Xue, FU Ying, CHAI Xiao-jiao, WANG Hong-yan, DENG Xin. Identification of LHC Gene Family in Setaria italica and Expression Analysis under Abiotic Stresses [J]. Biotechnology Bulletin, 2025, 41(8): 102-114. |
| [7] | BAI Yu-guo, LI Wan-di, LIANG Jian-ping, SHI Zhi-yong, LU Geng-long, LIU Hong-jun, NIU Jing-ping. Growth-promoting Mechanism of Trichoderma harzianum T9131 on Astragalus membranaceus Seedlings [J]. Biotechnology Bulletin, 2025, 41(8): 175-185. |
| [8] | HUA Wen-ping, LIU Fei, HAO Jia-xin, CHEN Chen. Identification and Expression Patterns Analysis of ADH Gene Family in Salvia miltiorrhiza [J]. Biotechnology Bulletin, 2025, 41(8): 211-219. |
| [9] | LA Gui-xiao, ZHAO Yu-long, DAI Dan-dan, YU Yong-liang, GUO Hong-xia, SHI Gui-xia, JIA Hui, YANG Tie-gang. Identification of Plasma Membrane H+-ATPase Gene Family in Safflower and Expression Analysis in Response to Low Nitrogen and Low Phosphorus Stress [J]. Biotechnology Bulletin, 2025, 41(8): 220-233. |
| [10] | HUANG Shi-yu, TIAN Shan-shan, YANG Tian-wei, GAO Man-rong, ZHANG Shang-wen. Genome-wide Identification and Expression Pattern Analysis of WRI1 Gene Family in Erythropalum scandens [J]. Biotechnology Bulletin, 2025, 41(8): 242-254. |
| [11] | REN Rui-bin, SI Er-jing, WAN Guang-you, WANG Jun-cheng, YAO Li-rong, ZHANG Hong, MA Xiao-le, LI Bao-chun, WANG Hua-jun, MENG Ya-xiong. Identification and Expression Analysis of GH17 Gene Family of Pyrenophora graminea [J]. Biotechnology Bulletin, 2025, 41(8): 146-154. |
| [12] | ZENG Dan, HUANG Yuan, WANG Jian, ZHANG Yan, LIU Qing-xia, GU Rong-hui, SUN Qing-wen, CHEN Hong-yu. Genome-wide Identification and Expression Analysis of bZIP Transcription Factor Family in Dendrobium officinale [J]. Biotechnology Bulletin, 2025, 41(8): 197-210. |
| [13] | ZHANG Ze, YANG Xiu-li, NING Dong-xian. Identification of 4CL Gene Family in Arachis hypogaea L. and Expression Analysis in Response to Drought and Salt Stress [J]. Biotechnology Bulletin, 2025, 41(7): 117-127. |
| [14] | ZHANG Xue-qiong, PAN Su-jun, LI Wei, DAI Liang-ying. Research Progress of Plant Phosphate Transporters in the Response to Stress [J]. Biotechnology Bulletin, 2025, 41(7): 28-36. |
| [15] | LI Xin-ni, LI Jun-yi, MA Xue-hua, HE Wei, LI Jia-li, YU Jia, CAO Xiao-ning, QIAO Zhi-jun, LIU Si-chen. Identification of the PMEI Gene Family of Pectin Methylesterase Inhibitor in Foxtail Millet and Analysis of Its Response to Abiotic Stress [J]. Biotechnology Bulletin, 2025, 41(7): 150-163. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||