Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (8): 65-73.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0339
Previous Articles Next Articles
DENG Mei-bi1(
), YAN Lang2,3(
), ZHAN Zhi-tian4,5, ZHU Min6, HE Yu-bing2,3(
)
Received:2025-03-31
Online:2025-08-26
Published:2025-07-17
Contact:
HE Yu-bing
E-mail:2942331446@qq.com;heyubing@caas.cn
DENG Mei-bi, YAN Lang, ZHAN Zhi-tian, ZHU Min, HE Yu-bing. Efficient CRISPR Gene Editing in Rice Assisted by RUBY[J]. Biotechnology Bulletin, 2025, 41(8): 65-73.
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | 用途 Function |
|---|---|---|
| DetecOligo1 | GTAGGTCTCCTGCAACCAGCAGCGAGGAGGATCCGTTTTAGAGCTAGAAATAGCAAG | 构建GCR-237-1载体 |
| DetecOligo2 | ACGGGTCTCATCGTGGTCCGTTTGCACCAGCCGGG | 构建GCR-237-1载体 |
| DetecOligo3 | GTAGGTCTCCACGACGAACTCGGTTTTAGAGCTAGAAATAGCAAG | 构建GCR-237-1载体 |
| DetecOligo4 | ACGGGTCTCAAAAACAGGGGCTCAATGTGGAAGCATGCACCAGCCGGG | 构建GCR-237-1载体 |
| DetecOligo5 | GTAGGTCTCCTGCACTTATCTGCGAGACGCAGCTGTTTTAGAGCTAGAAATAGCAAG | 构建GCR-237-2载体 |
| DetecOligo6 | ACGGGTCTCACTTGCAGATATCTGCACCAGCCGGG | 构建GCR-237-2载体 |
| DetecOligo7 | GTAGGTCTCCCAAGGAGCTCATGTTTTAGAGCTAGAAATAGCAAG | 构建GCR-237-2载体 |
| DetecOligo8 | ACGGGTCTCAAAAACAGCTTTAATTTTGGGGGCAATGCACCAGCCGGG | 构建GCR-237-2载体 |
| DetecOligo9 | CGTGGCGGATTCTCCAAGC | 菌检(大肠杆菌和农杆菌) |
| DetecOligo10 | ACCTTGAACTTCTTTGAGGGCAC | 菌检(大肠杆菌和农杆菌) |
| DetecOligo11 | CTCAACCCCAAGGCTAACAG | 植株转基因阳性鉴定 |
| DetecOligo12 | ACCTCAGGGCATCGGAAC | 植株转基因阳性鉴定 |
| DetecOligo13 | AGCTTGAGATCCTCAACCATGAAT | 植株转基因阳性鉴定 |
| DetecOligo14 | TTCACACAGGAAACAGCTATGAC | 植株转基因阳性鉴定 |
| DetecOligo15 | CCACTGCTCTCTTCGATCCC | 靶点扩增 |
| DetecOligo16 | GGTGCAGGTGGTTGTACTCT | 靶点扩增 |
| DetecOligo17 | TTTCCCGGTGGAAGAGGAGT | 靶点扩增 |
| DetecOligo18 | GTGCAAAATCGGCATCCCTC | 靶点扩增 |
| DetecOligo19 | CGGACAGGTTAAAGCGGTGT | 靶点扩增 |
| DetecOligo20 | AATGAGCTACAAGGCAAGGG | 靶点扩增 |
| DetecOligo21 | TGCAGATTCTGGGCAGTACG | 靶点扩增 |
| DetecOligo22 | TTCTCGAACACGCCGATGAG | 靶点扩增 |
| DetecOligo23 | AGACCCAGTGCTTCTTGAGC | 靶点扩增 |
| DetecOligo24 | TGTGGCTGCACAGGTAGAAG | 靶点扩增 |
| DetecOligo25 | TGCAAGAAGGTATGGTTCTTCAT | 靶点扩增 |
| DetecOligo26 | GTGCCTCCTCTCCATGACAC | 靶点扩增 |
Table 1 Summary of primers used in this experiment
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | 用途 Function |
|---|---|---|
| DetecOligo1 | GTAGGTCTCCTGCAACCAGCAGCGAGGAGGATCCGTTTTAGAGCTAGAAATAGCAAG | 构建GCR-237-1载体 |
| DetecOligo2 | ACGGGTCTCATCGTGGTCCGTTTGCACCAGCCGGG | 构建GCR-237-1载体 |
| DetecOligo3 | GTAGGTCTCCACGACGAACTCGGTTTTAGAGCTAGAAATAGCAAG | 构建GCR-237-1载体 |
| DetecOligo4 | ACGGGTCTCAAAAACAGGGGCTCAATGTGGAAGCATGCACCAGCCGGG | 构建GCR-237-1载体 |
| DetecOligo5 | GTAGGTCTCCTGCACTTATCTGCGAGACGCAGCTGTTTTAGAGCTAGAAATAGCAAG | 构建GCR-237-2载体 |
| DetecOligo6 | ACGGGTCTCACTTGCAGATATCTGCACCAGCCGGG | 构建GCR-237-2载体 |
| DetecOligo7 | GTAGGTCTCCCAAGGAGCTCATGTTTTAGAGCTAGAAATAGCAAG | 构建GCR-237-2载体 |
| DetecOligo8 | ACGGGTCTCAAAAACAGCTTTAATTTTGGGGGCAATGCACCAGCCGGG | 构建GCR-237-2载体 |
| DetecOligo9 | CGTGGCGGATTCTCCAAGC | 菌检(大肠杆菌和农杆菌) |
| DetecOligo10 | ACCTTGAACTTCTTTGAGGGCAC | 菌检(大肠杆菌和农杆菌) |
| DetecOligo11 | CTCAACCCCAAGGCTAACAG | 植株转基因阳性鉴定 |
| DetecOligo12 | ACCTCAGGGCATCGGAAC | 植株转基因阳性鉴定 |
| DetecOligo13 | AGCTTGAGATCCTCAACCATGAAT | 植株转基因阳性鉴定 |
| DetecOligo14 | TTCACACAGGAAACAGCTATGAC | 植株转基因阳性鉴定 |
| DetecOligo15 | CCACTGCTCTCTTCGATCCC | 靶点扩增 |
| DetecOligo16 | GGTGCAGGTGGTTGTACTCT | 靶点扩增 |
| DetecOligo17 | TTTCCCGGTGGAAGAGGAGT | 靶点扩增 |
| DetecOligo18 | GTGCAAAATCGGCATCCCTC | 靶点扩增 |
| DetecOligo19 | CGGACAGGTTAAAGCGGTGT | 靶点扩增 |
| DetecOligo20 | AATGAGCTACAAGGCAAGGG | 靶点扩增 |
| DetecOligo21 | TGCAGATTCTGGGCAGTACG | 靶点扩增 |
| DetecOligo22 | TTCTCGAACACGCCGATGAG | 靶点扩增 |
| DetecOligo23 | AGACCCAGTGCTTCTTGAGC | 靶点扩增 |
| DetecOligo24 | TGTGGCTGCACAGGTAGAAG | 靶点扩增 |
| DetecOligo25 | TGCAAGAAGGTATGGTTCTTCAT | 靶点扩增 |
| DetecOligo26 | GTGCCTCCTCTCCATGACAC | 靶点扩增 |
载体编号 Vector number | 基因 Gene | 靶点序列 Target sequence | 限制性内切酶 Restriction enzyme |
|---|---|---|---|
| GCR-237-1 | OsAGO2 | ACCAGCAGCGAGGAGGATCCAGG | BamH I |
| OsAGO3 | AACGGACCACGACGAACTCGAGG | Xho I | |
| OsAGO7 | TGCTTCCACATTGAGCCCCTCGG | Ban II | |
| GCR-237-2 | OsAGO2 | CTTATCTGCGAGACGCAGCTGGG | Pvu II |
| OsAGO3 | GATATCTGCAAGGAGCTCATCGG | Ban II | |
| OsAGO7 | TTGCCCCCAAAATTAAAGCTTGG | Hind III |
Table 2 Sequence of target sites
载体编号 Vector number | 基因 Gene | 靶点序列 Target sequence | 限制性内切酶 Restriction enzyme |
|---|---|---|---|
| GCR-237-1 | OsAGO2 | ACCAGCAGCGAGGAGGATCCAGG | BamH I |
| OsAGO3 | AACGGACCACGACGAACTCGAGG | Xho I | |
| OsAGO7 | TGCTTCCACATTGAGCCCCTCGG | Ban II | |
| GCR-237-2 | OsAGO2 | CTTATCTGCGAGACGCAGCTGGG | Pvu II |
| OsAGO3 | GATATCTGCAAGGAGCTCATCGG | Ban II | |
| OsAGO7 | TTGCCCCCAAAATTAAAGCTTGG | Hind III |
Fig. 1 Structural diagram of GCR vectorCas9 (orange box), gRNA (white box), and RUBY (red box)are expressed by the promoter OsUBQ10 P (blue box), and Hsp T is terminator
Fig. 3 Red-phenotype plants obtained after transformation with gene-editing vectors GCR-237-1 and GCR-237-2A: Comparative analysis of wild-type (ZH11, left) and GCR-237-1-transformed edited line A5 (right). B: Comparative analysis of wild-type (ZH11, left) and GCR-237-1-transformed edited line B15 (right). Bar=3 cm
Fig. 4 Positive identification of regenerated plantsM: DNA maker DL2000. WT: Wild type negative control plant (single band). 1-11: Positive regenerated plants (double bands)
Fig. 5 Proportion statistics of Cas9 positive plants and red plantsA: The positive ratio of the Cas9 expression cassette in all plants. The total number of regenerated plants in the three batches of GCR-237-1 and GCR-237-2 are (17, 19 and 20) and (13, 12 and 18), respectively. The number of transgenic positive plants in the three batches of regenerated seedlings of GCR-237-1 and GCR-237-2 are (17, 18, and 18) and (13, 12, and 14), respectively. B: The proportion of red seedlings in Cas9 positive plants. The number of red seedlings among the positive plants in the three batches of GCR-237-1 and GCR-237-2 are (17, 18, and 18) and (13, 12, and 14), respectively. The values in the bar charts are of the mean ± standard error (n=3)
Fig. 6 Identified results of some positive regenerated plants by enzyme digestionA: The mutant of OsAGO3 in GCR-237-1 was identified using Xho I enzyme digestion of PCR products. B: OsAGO7 mutant in GCR-237-2 strain was identified by PCR product digested by Hind III. M: DNA maker DL2000. + sign indicates that the enzyme is cut. In this study, GCR-237-1 strain plants targeted OsAGO2, OsAGO7, and GCR-237-2 strain plantstargeted OsAGO2 and OsAGO3 are directly sent to be sequenced
Fig. 8 Editing efficiency statistics of transformed plants and red plantsA: The proportion of edited plants among all plants. The total number of regenerated plants in the three batches of GCR-237-1 and GCR-237-2 are (17, 19, and 20) and (13, 12, and 18), respectively. The number of edited plants in the three batches of regenerated seedlings of GCR-237-1 and GCR-237-2 are (17, 18, and 18) and (13, 12, and 14), respectively. B: The proportion of edited plants among red plants. The number of red seedlings in the three batches of GCR-237-1 and GCR-237-2 are (17, 18, and 18) and (13, 12, and 14), respectively. The number of edited plants among red plants are (17, 18, and 18) and (13, 12, and 14), respectively. The values in the bar charts are of the mean ± standard error (n=3)
| [1] | Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria [J]. Proc Natl Acad Sci USA, 2012, 109(39): E2579-E2586. |
| [2] | Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337(6096): 816-821. |
| [3] | Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339(6121): 819-823. |
| [4] | Mali P, Yang LH, Esvelt KM, et al. RNA-guided human genome engineering via Cas9 [J]. Science, 2013, 339(6121): 823-826. |
| [5] | Chen JL, Li SY, He YB, et al. An update on precision genome editing by homology-directed repair in plants [J]. Plant Physiol, 2022, 188(4): 1780-1794. |
| [6] | Gallego-Bartolomé J, Gardiner J, Liu WL, et al. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain [J]. Proc Natl Acad Sci USA, 2018, 115(9): E2125-E2134. |
| [7] | Gong XY, Zhang T, Xing JL, et al. Positional effects on efficiency of CRISPR/Cas9-based transcriptional activation in rice plants [J]. aBIOTECH, 2019, 1(1): 1-5. |
| [8] | Li JY, Zhang C, He YB, et al. Plant base editing and prime editing: The current status and future perspectives [J]. J Integr Plant Biol, 2023, 65(2): 444-467. |
| [9] | Li ZX, Xiong XY, Li JF. The working dead: repurposing inactive CRISPR-associated nucleases as programmable transcriptional regulators in plants [J]. aBIOTECH, 2019, 1(1): 32-40. |
| [10] | Pan CT, Wu XC, Markel K, et al. CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants [J]. Nat Plants, 2021, 7(7): 942-953. |
| [11] | Mao YF, Zhang ZJ, Feng ZY, et al. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis [J]. Plant Biotechnol J, 2016, 14(2): 519-532. |
| [12] | Wang ZP, Xing HL, Dong L, et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation [J]. Genome Biol, 2015, 16(1): 144. |
| [13] | Yan LH, Wei SW, Wu YR, et al. High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system [J]. Mol Plant, 2015, 8(12): 1820-1823. |
| [14] | Chen LZ, Li W, Katin-Grazzini L, et al. A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants [J]. Hortic Res, 2018, 5: 13. |
| [15] | Liang Z, Chen KL, Li TD, et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes [J]. Nat Commun, 2017, 8: 14261. |
| [16] | Svitashev S, Schwartz C, Lenderts B, et al. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes [J]. Nat Commun, 2016, 7: 13274. |
| [17] | Woo JW, Kim J, Kwon SI, et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins [J]. Nat Biotechnol, 2015, 33(11): 1162-1164. |
| [18] | Zhang Y, Liang Z, Zong Y, et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA [J]. Nat Commun, 2016, 7: 12617. |
| [19] | Feng ZY, Zhang BT, Ding WN, et al. Efficient genome editing in plants using a CRISPR/Cas system [J]. Cell Res, 2013, 23(10): 1229-1232. |
| [20] | Mao YF, Zhang H, Xu NF, et al. Application of the CRISPR-Cas system for efficient genome engineering in plants [J]. Mol Plant, 2013, 6(6): 2008-2011. |
| [21] | Miao J, Guo DS, Zhang JZ, et al. Targeted mutagenesis in rice using CRISPR-Cas system [J]. Cell Res, 2013, 23(10): 1233-1236. |
| [22] | Shan QW, Wang YP, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system [J]. Nat Biotechnol, 2013, 31(8): 686-688. |
| [23] | Breyer D, Kopertekh L, Reheul D. Alternatives to antibiotic resistance marker genes forIn VitroSelection of genetically modified plants-scientific developments, current use, operational access and biosafety considerations [J]. Crit Rev Plant Sci, 2014, 33(4): 286-330. |
| [24] | Minden V, Deloy A, Volkert AM, et al. Antibiotics impact plant traits, even at small concentrations [J]. AoB Plants, 2017, 9(2): plx010. |
| [25] | He YB, Zhu M, Wang LH, et al. Improvements of TKC technology accelerate isolation of transgene-free CRISPR/Cas9-edited rice plants [J]. Rice Sci, 2019, 26(2): 109-117. |
| [26] | Dong L, Li LN, Liu CL, et al. Genome editing and double-fluorescence proteins enable robust maternal haploid induction and identification in maize [J]. Mol Plant, 2018, 11(9): 1214-1217. |
| [27] | Gao XH, Chen JL, Dai XH, et al. An effective strategy for reliably isolating heritable and Cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing [J]. Plant Physiol, 2016, 171(3): 1794-1800. |
| [28] | He Y, Zhang T, Sun H, et al. A reporter for noninvasively monitoring gene expression and plant transformation [J]. Hortic Res, 2020, 7(1): 152. |
| [29] | Xu JT, Yin YJ, Jian LM, et al. Seeing is believing: a visualization toolbox to enhance selection efficiency in maize genome editing [J]. Plant Biotechnol J, 2021, 19(5): 872-874. |
| [30] | Yan YY, Zhu JJ, Qi XT, et al. Establishment of an efficient seed fluorescence reporter-assisted CRISPR/Cas9 gene editing in maize [J]. J Integr Plant Biol, 2021, 63(9): 1671-1680. |
| [31] | Yu H, Zhao Y. Fluorescence marker-assisted isolation of Cas9-free and CRISPR-edited Arabidopsis plants [J]. Methods Mol Biol, 2019, 1917: 147-154. |
| [32] | Donaldson L. Autofluorescence in plants [J]. Molecules, 2020, 25(10): E2393. |
| [33] | Contag CH, Bachmann MH. Advances in in vivo bioluminescence imaging of gene expression [J]. Annu Rev Biomed Eng, 2002, 4: 235-260. |
| [34] | Jefferson RA. The GUS reporter gene system [J]. Nature, 1989, 342(6251): 837-838. |
| [35] | Millar AJ, Short SR, Chua NH, et al. A novel circadian phenotype based on firefly luciferase expression in transgenic plants [J]. Plant Cell, 1992, 4(9): 1075-1087. |
| [36] | He YB, Zhu M, Wu JH, et al. Repurposing of anthocyanin biosynthesis for plant transformation and genome editing [J]. Front Genome Ed, 2020, 2: 607982. |
| [37] | Liu Y, Zeng JM, Yuan C, et al. Cas9-PF, an early flowering and visual selection marker system, enhances the frequency of editing event occurrence and expedites the isolation of genome-edited and transgene-free plants [J]. Plant Biotechnol J, 2019, 17(7): 1191-1193. |
| [38] | Zheng J, Wu H, Zhu HB, et al. Determining factors, regulation system, and domestication of anthocyanin biosynthesis in rice leaves [J]. New Phytol, 2019, 223(2): 705-721. |
| [39] | Ge XY, Wang P, Wang Y, et al. Development of an eco-friendly pink cotton germplasm by engineering betalain biosynthesis pathway [J]. Plant Biotechnol J, 2023, 21(4): 674-676. |
| [40] | Wang D, Zhong Y, Feng B, et al. The RUBY reporter enables efficient haploid identification in maize and tomato [J]. Plant Biotechnol J, 2023, 21(8): 1707-1715. |
| [41] | Halpin C, Cooke SE, Barakate A, et al. Self-processing 2A-polyproteins—a system for co-ordinate expression of multiple proteins in transgenic plants [J]. Plant J, 1999, 17(4): 453-459. |
| [42] | Sharma P, Yan F, Doronina VA, et al. 2A peptides provide distinct solutions to driving stop-carry on translational recoding [J]. Nucleic Acids Res, 2012, 40(7): 3143-3151. |
| [43] | Xie KB, Minkenberg B, Yang YN. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system [J]. Proc Natl Acad Sci USA, 2015, 112(11): 3570-3575. |
| [44] | Wang JJ, Chen HD. A novel CRISPR/Cas9 system for efficiently generating Cas9-free multiplex mutants in Arabidopsis [J]. aBIOTECH, 2019, 1(1): 6-14. |
| [45] | de Oliveira MVV, Jin X, Chen X, et al. Imbalance of tyrosine by modulating TyrA arogenate dehydrogenases impacts growth and development of Arabidopsis thaliana [J]. Plant J, 2019, 97(5): 901-922. |
| [1] | DIAO Chen-yang, CUI You-zhi, LI Bing-zhi. Research Advances in Targeted Mutagenesis-mediated Microbial Evolutionary Engineering [J]. Biotechnology Bulletin, 2025, 41(8): 11-21. |
| [2] | YU Yong-xia, DU Zai-hui, ZHU Long-jiao, XU Wen-tao. Application and Research Progress of Gene Editing Technology in Bovine [J]. Biotechnology Bulletin, 2025, 41(8): 34-41. |
| [3] | LIU Hua, SONG Jie, ZENG Hai-juan, WANG Jin-bin, QIAN Yun-fang. Research Progress in Single-base Mutation Detection Methods and Applications [J]. Biotechnology Bulletin, 2025, 41(6): 61-70. |
| [4] | CHENG Hui-juan, WANG Xin, SHI Xiao-tao, MA Dong-xu, GONG Da-chun, HU Jun-peng, XIE Zhi-wen. Effects of Transcription Factor CREA Knockout on the Morphology and the Secretion of β-glucosidase in Aspergillus niger [J]. Biotechnology Bulletin, 2025, 41(6): 344-354. |
| [5] | HUO Guan-zhong, ZHANG Xin-ru, TIAN Shi-jun, LI Jun. Current Progress and Applications of CRISPR/Cas12a Gene Editing Technology in Plants [J]. Biotechnology Bulletin, 2025, 41(6): 1-11. |
| [6] | PEI Jing-qi, ZHAO Meng-ran, HUANG Chen-yang, WU Xiang-li. Discovery and Verification of a Functional Gene Influencing the Growth and Development of Pleurotus ostreatus [J]. Biotechnology Bulletin, 2025, 41(6): 327-334. |
| [7] | ZHOU Qian, TANG Meng-jun, ZHANG Xiao-yan, LU Jun-xian, TANG Xiu-jun, YANG Xing-xing, GAO Yu-shi. Research Progress in the Control of Multidrug Resistant Bacteria Based on in CRISPR-Cas System [J]. Biotechnology Bulletin, 2025, 41(5): 42-51. |
| [8] | GAO Chang, ZHUANG Tian-chi, LI Ning, LIU Yun, GU Peng-fei, ZHAO Xin-yi, JI Ming-hui. Gravity-driven Microfluidic Chip Based on RPA-CRISPR/Cas12a for the Rapid Detection of Mycobacterium tuberculosis [J]. Biotechnology Bulletin, 2025, 41(5): 62-69. |
| [9] | REN Zhu-ping, YANG Tai-ran, LEI Yuan-san, JIN Liu-fei, CUI Gu-zhen, TIAN Yi-ming, CHEN Zheng-hong. Construction of HIEC6-dCas9-SAM Transgenic Cell Line with Highly-efficient CRISPR Synergistic Activation Properties [J]. Biotechnology Bulletin, 2025, 41(5): 52-61. |
| [10] | WEN Bo-lin, WAN Min, HU Jian-jun, WANG Ke-xiu, JING Sheng-lin, WANG Xin-yue, ZHU Bo, TANG Ming-xia, LI Bing, HE Wei, ZENG Zi-xian. Establishment of Genetic Transformation and Gene Editing System for a Potato Cultivar Chuanyu 50 [J]. Biotechnology Bulletin, 2025, 41(4): 88-97. |
| [11] | CHEN Xiao-jun, HUI Jian, MA Hong-wen, BAI Hai-Bo, ZHONG Nan, LI Jia-run, FAN Yun-fang. Creating Rice Gerplasm Resources OsALS Rsistant to Herbicide through Single Base Gene Editing Technology [J]. Biotechnology Bulletin, 2025, 41(4): 106-114. |
| [12] | YANG Chao-jie, ZHANG Lan, CHEN Hong, HUANG Juan, SHI Tao-xiong, ZHU Li-wei, CHEN Qing-fu, LI Hong-you, DENG Jiao. Functional Identification of the Transcription Factor Gene FtbHLH3 in Regulating Flavonoid Biosynthesis in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2025, 41(4): 134-144. |
| [13] | LU Yong-jie, XIA Hai-qian, LI Yong-ling, ZHANG Wen-jian, YU Jing, ZHAO Hui-na, WANG Bing, XU Ben-bo, LEI Bo. Cloning and Expression Analysis of AP2/ERF Transcription Factor NtESR2 in Nicotiana tabacum [J]. Biotechnology Bulletin, 2025, 41(4): 266-277. |
| [14] | LIANG Li-cun, WANG Ke-fen, SONG Zu-huan, LIU Meng-ting, LI Jia-yu, LUO Hui-ying, YAO Bin, YANG Hao-meng. Improving the Efficiency of Gene Editing by Optimizing sgRNA in Aspergillus tubingensis [J]. Biotechnology Bulletin, 2025, 41(3): 62-70. |
| [15] | QIN Yu-ting, PAN Sen-tao, CHEN Yu-ping. Design and Application of Guide RNAs for Non-coding RNAs [J]. Biotechnology Bulletin, 2025, 41(3): 71-82. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||