Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (8): 53-64.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0088
Previous Articles Next Articles
LI Ya(
), JIANG Lin, XU Chuang, WANG Su-hui, MA Zhao, WANG Liang(
)
Received:2025-01-20
Online:2025-08-26
Published:2025-06-20
Contact:
WANG Liang
E-mail:13023515097@163.com;wangliang@jsnu.edu.cn
LI Ya, JIANG Lin, XU Chuang, WANG Su-hui, MA Zhao, WANG Liang. Research Progress in Molecular Defense Mechanisms of Chlamydomonas reinhardtii in Response to Heavy Metal Stress[J]. Biotechnology Bulletin, 2025, 41(8): 53-64.
Fig. 1 Schematic diagram of heavy metal metabolism and biosorption mechanisms in C. reinhardtiiA: Extracellular biosorption, including ion exchange, adsorption, and precipitation. B: Intracellular bioaccumulation, including sequestration, and transformation
重金属种类 Heavy metal | 胁迫影响 Stress effect | 响应机制 Response mechanism | 参考文献 Reference |
|---|---|---|---|
| Cu | 生长抑制 细胞形态变大 细胞聚集 叶绿体结构损伤,类囊体膜解体 酸钙体、淀粉粒、质体小球积累 叶绿素含量下降 产生过量活性氧 细胞内铜离子分布失衡 | 铜转运蛋白的表达增强 EPS螯合 抗氧化系统激活 生物隔离 重金属螯合肽含量提高 生物转化 | [ |
| Zn | 生长抑制 细胞外聚合物含量提升 叶绿素含量下降 促进Cu的吸收并产生复合毒性 降低淀粉含量 | 细胞壁吸附 EPS螯合 重金属螯合肽含量提高 抗氧化系统激活 | [ |
| Fe | 脂质产生增加 PSI和PSII反应中心的蛋白质含量降低 TAG生物合成增加 光合电子传递速率降低 产生过量活性氧 | 抗氧化系统激活 铁蛋白表达上调 | [ |
| Mn | 生长抑制 PSII功能受损 Mn-SOD活性降低 氧化应激敏感性增加 次生营养缺乏 | 锰转运蛋白的表达增强 抗氧化系统激活 磷酸盐转运系统调整 | [ |
| Hg | 生长抑制 叶绿素含量下降 脂质过氧化物 TBARS增加 活性氧增加 | 抗氧化系统激活 重金属螯合肽含量提高 | [ |
| Pb | 生长抑制 叶绿素含量下降 产生过量活性氧 呈现出质壁分离现象 淀粉颗粒和脂滴的原生质体收缩程度加剧 | 抗氧化系统激活 EPS螯合 | [ |
| As | 生长抑制 活性氧增加 抑制谷胱甘肽转移酶活性 降低核糖体活性 叶绿素含量下降 | EPS螯合 抗氧化系统激活 淀粉积累 细胞磷积累 | [ |
| Cr | 生长抑制 活性氧增加 脂质过氧化 | 抗氧化系统激活 光保护机制 酸钙体产生 | [ |
| Cd | 生长抑制 细胞聚集 质壁分离 淀粉颗粒和脂滴的原生质体收缩程度加剧 形成镉聚集体 细胞形态变大 液泡数量和体积增加 电子致密颗粒积累 | 重金属结合因子激活 生物隔离 EPS螯合 细胞壁吸附 | [ |
Table 1 Physiological effects and response mechanisms of C. reinhardtii under different heavy metal stresses
重金属种类 Heavy metal | 胁迫影响 Stress effect | 响应机制 Response mechanism | 参考文献 Reference |
|---|---|---|---|
| Cu | 生长抑制 细胞形态变大 细胞聚集 叶绿体结构损伤,类囊体膜解体 酸钙体、淀粉粒、质体小球积累 叶绿素含量下降 产生过量活性氧 细胞内铜离子分布失衡 | 铜转运蛋白的表达增强 EPS螯合 抗氧化系统激活 生物隔离 重金属螯合肽含量提高 生物转化 | [ |
| Zn | 生长抑制 细胞外聚合物含量提升 叶绿素含量下降 促进Cu的吸收并产生复合毒性 降低淀粉含量 | 细胞壁吸附 EPS螯合 重金属螯合肽含量提高 抗氧化系统激活 | [ |
| Fe | 脂质产生增加 PSI和PSII反应中心的蛋白质含量降低 TAG生物合成增加 光合电子传递速率降低 产生过量活性氧 | 抗氧化系统激活 铁蛋白表达上调 | [ |
| Mn | 生长抑制 PSII功能受损 Mn-SOD活性降低 氧化应激敏感性增加 次生营养缺乏 | 锰转运蛋白的表达增强 抗氧化系统激活 磷酸盐转运系统调整 | [ |
| Hg | 生长抑制 叶绿素含量下降 脂质过氧化物 TBARS增加 活性氧增加 | 抗氧化系统激活 重金属螯合肽含量提高 | [ |
| Pb | 生长抑制 叶绿素含量下降 产生过量活性氧 呈现出质壁分离现象 淀粉颗粒和脂滴的原生质体收缩程度加剧 | 抗氧化系统激活 EPS螯合 | [ |
| As | 生长抑制 活性氧增加 抑制谷胱甘肽转移酶活性 降低核糖体活性 叶绿素含量下降 | EPS螯合 抗氧化系统激活 淀粉积累 细胞磷积累 | [ |
| Cr | 生长抑制 活性氧增加 脂质过氧化 | 抗氧化系统激活 光保护机制 酸钙体产生 | [ |
| Cd | 生长抑制 细胞聚集 质壁分离 淀粉颗粒和脂滴的原生质体收缩程度加剧 形成镉聚集体 细胞形态变大 液泡数量和体积增加 电子致密颗粒积累 | 重金属结合因子激活 生物隔离 EPS螯合 细胞壁吸附 | [ |
| [1] | Choi SB, Yun YS. Biosorption of cadmium by various types of dried sludge: an equilibrium study and investigation of mechanisms [J]. J Hazard Mater, 2006, 138(2): 378-383. |
| [2] | Pluciński B, Nowicka B, Waloszek A, et al. The role of antioxidant response and nonphotochemical quenching of chlorophyll fluorescence in long-term adaptation to Cu-induced stress in Chlamydomonas reinhardtii [J]. Environ Sci Pollut Res Int, 2023, 30(25): 67250-67262. |
| [3] | Blaby-Haas CE, Merchant SS. The ins and outs of algal metal transport [J]. Biochim Biophys Acta, 2012, 1823(9): 1531-1552. |
| [4] | Merchant SS, Prochnik SE, Vallon O, et al. The chlamydomonas genome reveals the evolution of key animal and plant functions [J]. Science, 2007, 318(5848): 245-251. |
| [5] | Balzano S, Sardo A, Blasio M, et al. Microalgal metallothioneins and phytochelatins and their potential use in bioremediation [J]. Front Microbiol, 2020, 11: 517. |
| [6] | Tang YX, Zhang BL, Li ZY, et al. Overexpression of the sulfate transporter-encoding SULTR2 increases chromium accumulation in Chlamydomonas reinhardtii [J]. Biotechnol Bioeng, 2023, 120(5): 1334-1345. |
| [7] | Li Y, Jiang L, Xu C, et al. Insertional mutagenesis of AIDA or CYP720B1 in the green alga Chlamydomonas reinhardtii confers copper(II) tolerance and increased biomass [J]. J Hazard Mater, 2025, 486: 137026. |
| [8] | Samadani M, Perreault F, Oukarroum A, et al. Effect of cadmium accumulation on green algae Chlamydomonas reinhardtii and acid-tolerant Chlamydomonas CPCC 121 [J]. Chemosphere, 2018, 191: 174-182. |
| [9] | Zhang BL, Tang YX, Yu F, et al. Translatomics and physiological analyses of the detoxification mechanism of green Alga Chlamydomonas reinhardtii to cadmium toxicity [J]. J Hazard Mater, 2023, 448: 130990. |
| [10] | MacFie SM, Welbourn PM. The cell wall as a barrier to uptake of metal ions in the unicellular green Alga Chlamydomonas reinhardtii (Chlorophyceae) [J]. Arch Environ Contam Toxicol, 2000, 39(4): 413-419. |
| [11] | Naveed S, Yu QN, Szewczuk-Karpisz K, et al. Roles of extracellular polymeric substances in arsenic accumulation and detoxification by cell wall intact and mutant strains of Chlamydomonas reinhardtii [J]. J Environ Sci, 2025, 152: 142-154. |
| [12] | Tüzün İ, Bayramoğlu G, Yalçın E, et al. Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii [J]. J Environ Manag, 2005, 77(2): 85-92. |
| [13] | Zhou Y, Cui XC, Wu BB, et al. Microalgal extracellular polymeric substances (EPS) and their roles in cultivation, biomass harvesting, and bioproducts extraction [J]. Bioresour Technol, 2024, 406: 131054. |
| [14] | Xie QT, Liu N, Lin DH, et al. The complexation with proteins in extracellular polymeric substances alleviates the toxicity of Cd (II) to Chlorella vulgaris [J]. Environ Pollut, 2020, 263: 114102. |
| [15] | Li CH, Li PH, Fu HX, et al. A comparative study of the accumulation and detoxification of copper and zinc in Chlamydomonas reinhardtii: The role of extracellular polymeric substances [J]. Sci Total Environ, 2023, 871: 161995. |
| [16] | Li CH, Li PH, Fu HX, et al. Dynamic responses and adsorption mechanisms of Chlamydomonas reinhardtii extracellular polymeric substances under Cd, Cu, Pb, and Zn exposure [J]. Environ Pollut, 2025, 368: 125747. |
| [17] | Pang CX, Chai J, Zhu P, et al. Structural mechanism of intracellular autoregulation of zinc uptake in ZIP transporters [J]. Nat Commun, 2023, 14(1): 3404. |
| [18] | Fontaine SL, Quinn JM, Nakamoto SS, et al. Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii [J]. Eukaryot Cell, 2002, 1(5): 736-757. |
| [19] | Castruita M, Casero D, Karpowicz SJ, et al. Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps [J]. Plant Cell, 2011, 23(4): 1273-1292. |
| [20] | Cellier MFM, Bergevin I, Boyer E, et al. Polyphyletic origins of bacterial nramp transporters [J]. Trends Genet, 2001, 17(7): 365-370. |
| [21] | MacDiarmid CW, Milanick MA, Eide DJ. Induction of the ZRC1 metal tolerance gene in zinc-limited yeast confers resistance to zinc shock [J]. J Biol Chem, 2003, 278(17): 15065-15072. |
| [22] | Suzuki M, Gitlin JD. Intracellular localization of the Menkes and Wilson’s disease proteins and their role in intracellular copper transport [J]. Pediatr Int, 1999, 41(4): 436-442. |
| [23] | Schaaf G, Honsbein A, Meda AR, et al. AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots [J]. J Biol Chem, 2006, 281(35): 25532-25540. |
| [24] | Yagisawa F, Nishida K, Yoshida M, et al. Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae [J]. Plant J, 2009, 60(5): 882-893. |
| [25] | Caccamo A, Vega de Luna F, Wahni K, et al. Ascorbate peroxidase 2 (APX2) of Chlamydomonas binds copper and modulates the copper insertion into plastocyanin [J]. Antioxidants, 2023, 12(11): 1946. |
| [26] | Puig S, Lee J, Lau M, et al. Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake [J]. J Biol Chem, 2002, 277(29): 26021-26030. |
| [27] | Page MD, Kropat J, Hamel PP, et al. Two Chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation [J]. Plant Cell, 2009, 21(3): 928-943. |
| [28] | Merchant SS, Schmollinger S, Strenkert D, et al. From economy to luxury: Copper homeostasis in Chlamydomonas and other algae [J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(11): 118822. |
| [29] | González-Guerrero M, Argüello JM. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites [J]. Proc Natl Acad Sci USA, 2008, 105(16): 5992-5997. |
| [30] | Williams LE, Mills RF. P1B-ATPases-an ancient family of transition metal pumps with diverse functions in plants [J]. Trends Plant Sci, 2005, 10(10): 491-502. |
| [31] | Abdel-Ghany SE, Müller-Moulé P, Niyogi KK, et al. Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts [J]. Plant Cell, 2005, 17(4): 1233-1251. |
| [32] | Strenkert D, Schmollinger S, Hu YT, et al. Zn deficiency disrupts Cu and S homeostasis in Chlamydomonas resulting in over accumulation of Cu and Cysteine [J]. Metallomics, 2023, 15(7): mfad043. |
| [33] | Gaither LA, Eide DJ. Eukaryotic zinc transporters and their regulation [J]. Biometals, 2001, 14(3/4): 251-270. |
| [34] | Hanikenne M, Krämer U, Demoulin V, et al. A comparative inventory of metal transporters in the green alga and the red alga [J]. Plant Physiol, 2005, 137(2): 428-446. |
| [35] | Ishimaru Y, Takahashi R, Bashir K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport [J]. Sci Rep, 2012, 2: 286. |
| [36] | Chang P, Yin H, Imanaka T, et al. The metal transporter CrNRAMP1 is involved in zinc and cobalt transports in Chlamydomonas reinhardtii [J]. Biochem Biophys Res Commun, 2020, 523(4): 880-886. |
| [37] | Allen MD, del Campo JA, Kropat J, et al. FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii [J]. Eukaryot Cell, 2007, 6(10): 1841-1852. |
| [38] | Urzica EI, Casero D, Yamasaki H, et al. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage [J]. Plant Cell, 2012, 24(10): 3921-3948. |
| [39] | Chen JC, Hsieh SI, Kropat J, et al. A ferroxidase encoded by FOX1 contributes to iron assimilation under conditions of poor iron nutrition in Chlamydomonas [J]. Eukaryot Cell, 2008, 7(3): 541-545. |
| [40] | Allen MD, Kropat J, Tottey S, et al. Manganese deficiency in Chlamydomonas results in loss of photosystem II and MnSOD function, sensitivity to peroxides, and secondary phosphorus and iron deficiency [J]. Plant Physiol, 2007, 143(1): 263-277. |
| [41] | Tsednee M, Castruita M, Salomé PA, et al. Manganese co-localizes with calcium and phosphorus in Chlamydomonas acidocalcisomes and is mobilized in manganese-deficient conditions [J]. J Biol Chem, 2019, 294(46): 17626-17641. |
| [42] | Luk E, Carroll M, Baker M, et al. Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family [J]. Proc Natl Acad Sci USA, 2003, 100(18): 10353-10357. |
| [43] | Su Z, Chai MF, Lu PL, et al. AtMTM1, a novel mitochondrial protein, may be involved in activation of the manganese-containing superoxide dismutase in Arabidopsis [J]. Planta, 2007, 226(4): 1031-1039. |
| [44] | Thiriet-Rupert S, Gain G, Jadoul A, et al. Long-term acclimation to cadmium exposure reveals extensive phenotypic plasticity in Chlamydomonas [J]. Plant Physiol, 2021, 187(3): 1653-1678. |
| [45] | Tao LY, Wang L, Liu LH, et al. Phosphorous accumulation associated with mitochondrial PHT3-mediated enhanced arsenate tolerance in Chlamydomonas reinhardtii [J]. J Hazard Mater, 2024, 478: 135460. |
| [46] | Xi YM, Han BL, Kong FT, et al. Enhancement of arsenic uptake and accumulation in green microalga Chlamydomonas reinhardtii through heterologous expression of the phosphate transporter DsPht1 [J]. J Hazard Mater, 2023, 459: 132130. |
| [47] | Chen ZZ, Zhu L, Wilkinson KJ. Validation of the biotic ligand model in metal mixtures: bioaccumulation of lead and copper [J]. Environ Sci Technol, 2010, 44(9): 3580-3586. |
| [48] | Sánchez-Marín P, Fortin C, Campbell PGC. Lead (Pb) and copper (Cu) share a common uptake transporter in the unicellular alga Chlamydomonas reinhardtii [J]. Biometals, 2014, 27(1): 173-181. |
| [49] | Bräutigam A, Schaumlöffel D, Preud’homme H, et al. Physiological characterization of cadmium-exposed Chlamydomonas reinhardtii [J]. Plant Cell Environ, 2011, 34(12): 2071-2082. |
| [50] | Kobayashi I, Fujiwara S, Saegusa H, et al. Relief of arsenate toxicity by Cd-stimulated phytochelatin synthesis in the green alga Chlamydomonas reinhardtii [J]. Mar Biotechnol, 2006, 8(1): 94-101. |
| [51] | Xiao XF, Li WF, Jin M, et al. Responses and tolerance mechanisms of microalgae to heavy metal stress: a review [J]. Mar Environ Res, 2023, 183: 105805. |
| [52] | Nagel K, Adelmeier U, Voigt J. Subcellular distribution of cadmium in the unicellular green alga Chlamydomonas reinhardtii [J]. J Plant Physiol, 1996, 149(1-2): 86-90. |
| [53] | Kiran Marella T, Saxena A, Tiwari A. Diatom mediated heavy metal remediation: a review [J]. Bioresour Technol, 2020, 305: 123068. |
| [54] | Dayer R, Fischer BB, Eggen RIL, et al. The peroxiredoxin and glutathione peroxidase families in Chlamydomonas reinhardtii [J]. Genetics, 2008, 179(1): 41-57. |
| [55] | Romano RL, Liria CW, Machini MT, et al. Cadmium decreases the levels of glutathione and enhances the phytochelatin concentration in the marine dinoflagellate Lingulodinium polyedrum [J]. J Appl Phycol, 2017, 29(2): 811-820. |
| [56] | Tsuji N, Hirayanagi N, Iwabe O, et al. Regulation of phytochelatin synthesis by zinc and cadmium in marine green alga, Dunaliella tertiolecta [J]. Phytochemistry, 2003, 62(3): 453-459. |
| [57] | Delevoye C, Marks MS, Raposo G. Lysosome-related organelles as functional adaptations of the endolysosomal system [J]. Curr Opin Cell Biol, 2019, 59: 147-158. |
| [58] | Docampo R, Huang GZ. Acidocalcisomes of eukaryotes [J]. Curr Opin Cell Biol, 2016, 41: 66-72. |
| [59] | Blaby-Haas CE, Merchant SS. Lysosome-related organelles as mediators of metal homeostasis [J]. J Biol Chem, 2014, 289(41): 28129-28136. |
| [60] | Long H, Fang JH, Ye L, et al. Structural and functional regulation of Chlamydomonas lysosome-related organelles during environmental changes [J]. Plant Physiol, 2023, 192(2): 927-944. |
| [61] | Docampo R. Advances in the cellular biology, biochemistry, and molecular biology of acidocalcisomes [J]. Microbiol Mol Biol Rev, 2024, 88(1): e0004223. |
| [62] | Schmollinger S, Chen S, Strenkert D, et al. Single-cell visualization and quantification of trace metals in Chlamydomonas lysosome-related organelles [J]. Proc Natl Acad Sci USA, 2021, 118(16): e2026811118. |
| [63] | Klompmaker SH, Kohl K, Fasel N, et al. Magnesium uptake by connecting fluid-phase endocytosis to an intracellular inorganic cation filter [J]. Nat Commun, 2017, 8(1): 1879. |
| [64] | Deng SX, Wang WX. Dynamic regulation of intracellular labile Cu(I)/Cu(II) cycle in microalgae Chlamydomonas reinhardtii: disrupting the balance by Cu stress [J]. Environ Sci Technol, 2024, 58(12): 5255-5266. |
| [65] | Zhan D, Liu Y, Yu N, et al. Photosynthetic response of Chlamydomonas reinhardtii and Chlamydomonas sp. 1710 to zinc toxicity [J]. Front Microbiol, 2024, 15: 1383360. |
| [66] | Ye ML, Fang S, Yu QN, et al. Copper and zinc interact significantly in their joint toxicity to Chlamydomonas reinhardtii: Insights from physiological and transcriptomic investigations [J]. Sci Total Environ, 2023, 905: 167122. |
| [67] | Devadasu E, Subramanyam R. Enhanced lipid production in Chlamydomonas reinhardtii caused by severe iron deficiency [J]. Front Plant Sci, 2021, 12: 615577. |
| [68] | Devadasu E, Chinthapalli DK, Chouhan NS, et al. Changes in the photosynthetic apparatus and lipid droplet formation in Chlamydomonas reinhardtii under iron deficiency [J]. Photosynth Res, 2019, 139(1-3): 253-266. |
| [69] | Höhner R, Barth J, Magneschi L, et al. The metabolic status drives acclimation of iron deficiency responses in Chlamydomonas reinhardtii as revealed by proteomics based hierarchical clustering and reverse genetics [J]. Mol Cell Proteom, 2013, 12(10): 2774-2790. |
| [70] | Page MD, Allen MD, Kropat J, et al. Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii [J]. Plant Cell, 2012, 24(6): 2649-2665. |
| [71] | Elbaz A, Wei YY, Meng Q, et al. Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii [J]. Ecotoxicology, 2010, 19(7): 1285-1293. |
| [72] | Howe G, Merchant S. Heavy metal-activated synthesis of peptides in Chlamydomonas reinhardtii [J]. Plant Physiol, 1992, 98(1): 127-136. |
| [73] | Zheng CQ, Aslam M, Liu XJ, et al. Impact of Pb on Chlamydomonas reinhardtii at physiological and transcriptional levels [J]. Front Microbiol, 2020, 11: 1443. |
| [74] | Li CH, Zheng C, Fu HX, et al. Contrasting detoxification mechanisms of Chlamydomonas reinhardtii under Cd and Pb stress [J]. Chemosphere, 2021, 274: 129771. |
| [75] | Dong YM, Gao ML, Qiu WW, et al. Effects of microplastic on arsenic accumulation in Chlamydomonas reinhardtii in a freshwater environment [J]. J Hazard Mater, 2021, 405: 124232. |
| [76] | Jiang ZQ, Sun YT, Guan HZ, et al. Contributions of polysaccharides to arsenate resistance in Chlamydomonas reinhardtii [J]. Ecotoxicol Environ Saf, 2022, 229: 113091. |
| [77] | Nowicka B, Fesenko T, Walczak J, et al. The inhibitor-evoked shortage of tocopherol and plastoquinol is compensated by other antioxidant mechanisms in Chlamydomonas reinhardtii exposed to toxic concentrations of cadmium and chromium ions [J]. Ecotoxicol Environ Saf, 2020, 191: 110241. |
| [78] | Cheloni G, Slaveykova VI. Morphological plasticity in Chlamydomonas reinhardtii and acclimation to micropollutant stress [J]. Aquat Toxicol, 2021, 231: 105711. |
| [79] | Wang L, Yang LJ, Wen X, et al. Rapid and high efficiency transformation of Chlamydomonas reinhardtii by square-wave electroporation [J]. Biosci Rep, 2019, 39(1): BSR20181210. |
| [80] | Ibuot A, Dean AP, McIntosh OA, et al. Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains [J]. Algal Res, 2017, 24: 89-96. |
| [81] | Ibuot A, Webster RE, Williams LE, et al. Increased metal tolerance and bioaccumulation of zinc and cadmium in Chlamydomonas reinhardtii expressing a AtHMA4 C-terminal domain protein [J]. Biotechnol Bioeng, 2020, 117(10): 2996-3005. |
| [82] | Chokshi K, Kavanagh K, Khan I, et al. Surface displayed MerR increases mercury accumulation by green microalga Chlamydomonas reinhardtii [J]. Environ Int, 2024, 189: 108813. |
| [83] | Liao TC, Ye L, Lin YW, et al. Surface display and application of cadmium-binding protein CADR on the cell wall of Chlamydomonas reinhardtii [J]. Chin J Biotechnol, 2024, 40(10): 3689-3704. |
| [84] | Chen H, Yang QL, Xu JX, et al. Efficient methods for multiple types of precise gene-editing in Chlamydomonas [J]. Plant J, 2023, 115(3): 846-865. |
| [85] | Battarra C, Angstenberger M, Bassi R, et al. Efficient DNA-free co-targeting of nuclear genes in Chlamydomonas reinhardtii [J]. Biol Direct, 2024, 19(1): 108. |
| [86] | Nievergelt AP, Diener DR, Bogdanova A, et al. Efficient precision editing of endogenous Chlamydomonas reinhardtii genes with CRISPR-Cas [J]. Cell Rep Meth, 2023, 3(8): 100562. |
| [87] | Nievergelt AP, Diener DR, Bogdanova A, et al. Protocol for precision editing of endogenous Chlamydomonas reinhardtii genes with CRISPR-Cas [J]. STAR Protoc, 2024, 5(1): 102774. |
| [88] | Kao PH, Ng IS. CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii [J]. Bioresour Technol, 2017, 245: 1527-1537. |
| [89] | El-Sheekh MM, Galal HR, Mousa ASH, et al. Coupling wastewater treatment, biomass, lipids, and biodiesel production of some green microalgae [J]. Environ Sci Pollut Res Int, 2023, 30(12): 35492-35504. |
| [1] | LI Jia-xin, LI Hong-yan, LIU Li-e, ZHANG Tian, ZHOU Wu. Identification and Expression Analysis of the NRAMP Family in Seabuckthorn Under Lead Stress [J]. Biotechnology Bulletin, 2024, 40(5): 191-202. |
| [2] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
| [3] | LI Wang-ning, ZHANG Hao-jie, LI Ya-nan, LIANG Meng-jing, JI Chun-li, Zhang Chun-hui, LI Run-zhi, CUI Yu-lin, QIN Song, CUI Hong-li. Phenotypic Characterization of Blue Photoreceptor Plant Type Cryptochrome CRY Mutant in Chlamydomonas reinhardtii [J]. Biotechnology Bulletin, 2023, 39(2): 243-253. |
| [4] | CHEN Hong-yan, LI Xiao-er, LI Zhong-guang. Sugar Signaling and Its Role in Plant Response to Environmental Stress [J]. Biotechnology Bulletin, 2022, 38(7): 80-89. |
| [5] | LI Yi-han, YU Lang-liu, LI Chun-yan, ZHANG Meng-meng, ZHANG Xiao-qin, FANG Yun-xia, XUE Da-wei. Whole Genome Identification of Barley NRAMP and Gene Expression Analysis Under Heavy Metal Stress [J]. Biotechnology Bulletin, 2022, 38(6): 103-111. |
| [6] | YANG Lu, XIN Jian-pan, TIAN Ru-nan. Research Progress in the Mitigative Effects of Rhizosphere Microorganisms on Heavy Metal Stress in Plants and Their Mechanisms [J]. Biotechnology Bulletin, 2022, 38(3): 213-225. |
| [7] | HU Hua-ran, DU Lei, ZHANG Rui-hao, ZHONG Qiu-yue, LIU Fa-wan, GUI Min. Research Progress in the Adaptation of Hot Pepper(Capsicum annuum L.)to Abiotic Stress [J]. Biotechnology Bulletin, 2022, 38(12): 58-72. |
| [8] | CHEN Xuan, LIU Xiang-long, TANG Ting. Advances of Bryophytes in Response to Heavy Metal Stress [J]. Biotechnology Bulletin, 2020, 36(10): 191-199. |
| [9] | Jimilamu JIAMALI, Miheriban ABILIMITI, Guhainisha MAIMAITI, Ainiwaer TUMIER. Tolerance and Adsorption of 2 Photobionts to Heavy Metal Cu and Zn [J]. Biotechnology Bulletin, 2019, 35(6): 69-75. |
| [10] | YU Run-lan ,LIU A-juan ,LIU Ya-nan, LIU Xue-duan, QIU Guan-zhou, ZENG Wei-min. The Research Progress of the Functions and Mechanism of Extracellular Proteins in Bioleaching [J]. Biotechnology Bulletin, 2017, 33(7): 62-68. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||