Biotechnology Bulletin ›› 2026, Vol. 42 ›› Issue (5): 1-13.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0480
LIU Jia1(
), REN Yi-shang2, JING Xiao-yan2,4(
), XU La3(
)
Received:2025-05-13
Online:2025-07-30
Published:2025-07-30
Contact:
JING Xiao-yan, XU La
E-mail:liujia19850528@126.com;jingxy@qibebt.ac.cn;xula@shandong.cn
LIU Jia, REN Yi-shang, JING Xiao-yan, XU La. Applications and Prospects of Raman Spectroscopy-based “Screen-First, Culture-Second” Strategy in Functional Microbial Resource Exploration[J]. Biotechnology Bulletin, 2026, 42(5): 1-13.
指标 Parameter | “先养后筛”传统培养法 "Culture-First, Screen-Second" traditional culture method | “先筛后养”单细胞培养策略 "Screen-First, Culture-Second" single-cell culture strategy |
|---|---|---|
| 通量 | 低(实验繁琐,效率低下) | 高(可达数百个至数千单细胞/h) |
| 培养周期 | 长(需数周至数月) | 短(约3-14 d) |
| 培养偏倚 | 严重(细胞群体成分失真) | 低(直接靶向原位分选) |
| 假阳性率 | 较高(易引发非特异反应) | 低(拉曼光谱可直接表征功能) |
| 活性保持率 | 高(部分细胞在纯化时可能进入VBNC状态) | 高(拉曼分选对活性几乎不造成影响) |
| 假阴性率 | 高(细胞生长时漏检) | 低(通过采取措施减少假阴性) |
Table 1 Comparison of the technical performance between traditional culture methods and the single-cell "Screen-First, Culture-Second" strategy
指标 Parameter | “先养后筛”传统培养法 "Culture-First, Screen-Second" traditional culture method | “先筛后养”单细胞培养策略 "Screen-First, Culture-Second" single-cell culture strategy |
|---|---|---|
| 通量 | 低(实验繁琐,效率低下) | 高(可达数百个至数千单细胞/h) |
| 培养周期 | 长(需数周至数月) | 短(约3-14 d) |
| 培养偏倚 | 严重(细胞群体成分失真) | 低(直接靶向原位分选) |
| 假阳性率 | 较高(易引发非特异反应) | 低(拉曼光谱可直接表征功能) |
| 活性保持率 | 高(部分细胞在纯化时可能进入VBNC状态) | 高(拉曼分选对活性几乎不造成影响) |
| 假阴性率 | 高(细胞生长时漏检) | 低(通过采取措施减少假阴性) |
技术指标 Performance metrics | 单细胞拉曼技术 Single-cell Raman technologya | 荧光激活细胞分选 Fluorescence-activated cell sorting | 磁性激活细胞分选 Magnetic-activated cell sorting | 微流控液滴技术 Droplet-based microfluidics | 活细胞荧光原位杂交 Live cell fluorescence in situ hybridization |
|---|---|---|---|---|---|
| 可培养率 | ~17% | ~7.3% | — | ~3.3% | ~2.5% |
| 筛选准确率 | 100% | — | ~79% | ~32.2% | 100% |
| 培养周期 | ~14 d | 数天至数周 | 数天至数周 | ~8-10 d | 数天至数周 |
| 标记需求 | 无须荧光/磁性探针 | 需荧光标记(抗体或探针) | 需抗体+磁珠标记 | 通常需荧光或化学底物作为功能报告 | 需荧光寡核苷酸探针标记 |
| 功能识别机制 | 代谢功能(D2O吸收速率) | 荧光标记抗原/报告基因 | 细胞表面抗原 | 代谢产物或酶活性(荧光/化学底物) | 核酸序列(16S rRNA序列) |
| 功能活性定量 | 可定量(C-D峰强度) | 可半定量荧光强度 | 不可定量 | 可半定量荧光或底物产物 | 可半定量荧光强度 |
| 功能识别 | 可识别 | 可识别 | 可识别 | 可识别 | 可识别 |
| 分选通量 | 高(102-103细胞/分钟) | 极高(104-106细胞/秒) | 高(批量并行处理) | 极高(104-106细胞/时) | 高(结合FACS,受限于低活性) |
| 活性保持率 | 无损 | 较高(>83%) | 高(>90%) | 高 | 低(>1%) |
Table 2 Comparison of performance between single-cell Raman technology and other single-cell technologies
技术指标 Performance metrics | 单细胞拉曼技术 Single-cell Raman technologya | 荧光激活细胞分选 Fluorescence-activated cell sorting | 磁性激活细胞分选 Magnetic-activated cell sorting | 微流控液滴技术 Droplet-based microfluidics | 活细胞荧光原位杂交 Live cell fluorescence in situ hybridization |
|---|---|---|---|---|---|
| 可培养率 | ~17% | ~7.3% | — | ~3.3% | ~2.5% |
| 筛选准确率 | 100% | — | ~79% | ~32.2% | 100% |
| 培养周期 | ~14 d | 数天至数周 | 数天至数周 | ~8-10 d | 数天至数周 |
| 标记需求 | 无须荧光/磁性探针 | 需荧光标记(抗体或探针) | 需抗体+磁珠标记 | 通常需荧光或化学底物作为功能报告 | 需荧光寡核苷酸探针标记 |
| 功能识别机制 | 代谢功能(D2O吸收速率) | 荧光标记抗原/报告基因 | 细胞表面抗原 | 代谢产物或酶活性(荧光/化学底物) | 核酸序列(16S rRNA序列) |
| 功能活性定量 | 可定量(C-D峰强度) | 可半定量荧光强度 | 不可定量 | 可半定量荧光或底物产物 | 可半定量荧光强度 |
| 功能识别 | 可识别 | 可识别 | 可识别 | 可识别 | 可识别 |
| 分选通量 | 高(102-103细胞/分钟) | 极高(104-106细胞/秒) | 高(批量并行处理) | 极高(104-106细胞/时) | 高(结合FACS,受限于低活性) |
| 活性保持率 | 无损 | 较高(>83%) | 高(>90%) | 高 | 低(>1%) |
| [1] | Olicón-Hernández DR, Guerra-Sánchez G, Porta CJ, et al. Fundaments and concepts on screening of microorganisms for biotechnological applications. mini review [J]. Curr Microbiol, 2022, 79(12): 373. |
| [2] | Lagier JC, Hugon P, Khelaifia S, et al. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota [J]. Clin Microbiol Rev, 2015, 28(1): 237-264. |
| [3] | Thrash JC. Culturing the uncultured: risk versus reward [J]. mSystems, 2019, 4(3): e00130-19. |
| [4] | Li HZ, Bi QF, Yang K, et al. D2O-isotope-labeling approach to probing phosphate-solubilizing bacteria in complex soil communities by single-cell Raman spectroscopy [J]. Anal Chem, 2019, 91(3): 2239-2246. |
| [5] | Zheng RK, Liu R, Shan YQ, et al. Characterization of the first cultured free-living representative of Candidatus Izemoplasma uncovers its unique biology [J]. ISME J, 2021, 15(9): 2676-2691. |
| [6] | Liu C, Du MX, Abuduaini R, et al. Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank [J]. Microbiome, 2021, 9(1): 119. |
| [7] | Schloss PD, Handelsman J. Metagenomics for studying unculturable microorganisms: cutting the gordian knot [J]. Genome Biol, 2005, 6(8): 229. |
| [8] | Wilson CG, Nowell RW, Barraclough TG. Cross-contamination explains "inter and intraspecific horizontal genetic transfers" between asexual bdelloid rotifers [J]. Curr Biol, 2018, 28(15): 2436-2444.e14. |
| [9] | Xu JB, Zhu D, Ibrahim AD, et al. Raman deuterium isotope probing reveals microbial metabolism at the single-cell level [J]. Anal Chem, 2017, 89(24): 13305-13312. |
| [10] | Wang X, Liu NM, Zhao YF, et al. Research progress in the medical application of heavy water, especially in the field of D2O-Raman spectroscopy [J]. Int J Med Sci, 2022, 19(8): 1357-1363. |
| [11] | Song YZ, Cui L, López JÁS, et al. Raman-Deuterium Isotope Probing for in situ identification of antimicrobial resistant bacteria in Thames River [J]. Sci Rep, 2017, 7(1): 16648. |
| [12] | Watterson WJ, Tanyeri M, Watson AR, et al. Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes [J]. eLife, 2020, 9: e56998. |
| [13] | Jing XY, Gong YH, Pan HH, et al. Single-cell Raman-activated sorting and cultivation (scRACS-Culture) for assessing and mining in situ phosphate-solubilizing microbes from nature [J]. ISME Commun, 2022, 2(1): 106. |
| [14] | Jones BV, Sun F, Marchesi JR. Using skimmed milk agar to functionally screen a gut metagenomic library for proteases may lead to false positives [J]. Lett Appl Microbiol, 2007, 45(4): 418-420. |
| [15] | Wang L, Liu W, Tang JW, et al. Applications of Raman spectroscopy in bacterial infections: principles, advantages, and shortcomings [J]. Front Microbiol, 2021, 12: 683580. |
| [16] | Hekmatara M, Heidari Baladehi M, Ji YT, et al. D2O-probed Raman microspectroscopy distinguishes the metabolic dynamics of macromolecules in organellar anticancer drug response [J]. Anal Chem, 2021, 93(4): 2125-2134. |
| [17] | Fakruddin M, Mannan KS, Andrews S. Viable but nonculturable bacteria: food safety and public health perspective [J]. ISRN Microbiol, 2013, 2013: 703813. |
| [18] | Bao QH, Bo XY, Chen L, et al. Comparative analysis using Raman spectroscopy of the cellular constituents of Lacticaseibacillus paracasei Zhang in a normal and viable but nonculturable state [J]. Microorganisms, 2023, 11(5): 1266. |
| [19] | Lee KS, Palatinszky M, Pereira FC, et al. An automated Raman-based platform for the sorting of live cells by functional properties [J]. Nat Microbiol, 2019, 4(6): 1035-1048. |
| [20] | Wang Y, Xu JB, Kong LC, et al. Raman-deuterium isotope probing to study metabolic activities of single bacterial cells in human intestinal microbiota [J]. Microb Biotechnol, 2020, 13(2): 572-583. |
| [21] | Zhang J, Lin HN, Xu JB, et al. High-throughput single-cell sorting by stimulated Raman-activated cell ejection [J]. Sci Adv, 2024, 10(50): eadn6373. |
| [22] | Wang XX, Ren LH, Diao ZD, et al. Robust spontaneous Raman flow cytometry for single-cell metabolic phenome profiling via pDEP-DLD-RFC [J]. Adv Sci, 2023, 10(16): e2207497. |
| [23] | Wang C, Chen RZ, Xu J, et al. Single-cell Raman spectroscopy identifies Escherichia coli persisters and reveals their enhanced metabolic activities [J]. Front Microbiol, 2022, 13: 936726. |
| [24] | Liu L, Feng B, Song Y, et al. Detecting and classifying metabolic activity of Staphylococcus aureus by D2O-probed single-cell Raman spectroscopy and machine learning [J]. Biosaf Health, 2025, 7(2): 94-102. |
| [25] | Schaible GA, Cliff JB, Crandall JA, et al. Comparing Raman and NanoSIMS for heavy water labeling of single cells [J]. bioRxiv, 2025: 2024.07.05.602271. |
| [26] | Li HZ, Yang K, Liao H, et al. Active antibiotic resistome in soils unraveled by single-cell isotope probing and targeted metagenomics [J]. Proc Natl Acad Sci USA, 2022, 119(40): e2201473119. |
| [27] | Wang JW, Luo YJ, Wu Y, et al. Single-cell Raman spectroscopy as a novel platform for unveiling the heterogeneity of mesenchymal stem cells [J]. Talanta, 2025, 292: 127933. |
| [28] | Zhu LJ, Yang YN, Xu F, et al. Open-set deep learning-enabled single-cell Raman spectroscopy for rapid identification of airborne pathogens in real-world environments [J]. Sci Adv, 2025, 11(2): eadp7991. |
| [29] | Xu T, Gong YH, Su XL, et al. Phenome-genome profiling of single bacterial cell by Raman-activated gravity-driven encapsulation and sequencing [J]. Small, 2020, 16(30): e2001172. |
| [30] | Wang JK, Kong K, Guo C, et al. Cultureless enumeration of live bacteria in urinary tract infection by single-cell Raman spectroscopy [J]. Front Microbiol, 2023, 14: 1144607. |
| [31] | Li JB, Zhang DY, Luo CL, et al. In situ discrimination and cultivation of active degraders in soils by genome-directed cultivation assisted by SIP-Raman-activated cell sorting [J]. Environ Sci Technol, 2023, 57(44): 17087-17098. |
| [32] | Mahdizade Ari M, Scholz KJ, Cieplik F, et al. Viable but non-cultivable state in oral microbiota: a critical review of an underexplored microbial survival strategy [J]. Front Cell Infect Microbiol, 2025, 15: 1533768. |
| [33] | Kage D, Heinrich K, Volkmann KV, et al. Multi-angle pulse shape detection of scattered light in flow cytometry for label-free cell cycle classification [J]. Commun Biol, 2021, 4(1): 1144. |
| [34] | Telford WG. Flow cytometry and cell sorting [J]. Front Med: Lausanne, 2023, 10: 1287884. |
| [35] | Bellais S, Nehlich M, Ania M, et al. Species-targeted sorting and cultivation of commensal bacteria from the gut microbiome using flow cytometry under anaerobic conditions [J]. Microbiome, 2022, 10(1): 24. |
| [36] | Plouffe BD, Murthy SK, Lewis LH. Fundamentals and application of magnetic particles in cell isolation and enrichment: a review [J]. Rep Prog Phys, 2015, 78(1): 016601. |
| [37] | van Gogh M, Louwers JM, Celli A, et al. Next-generation IgA-SEQ allows for high-throughput, anaerobic, and metagenomic assessment of IgA-coated bacteria [J]. Microbiome, 2024, 12(1): 211. |
| [38] | Kim JA, Choi SS, Lim JK, et al. Unlocking marine treasures: isolation and mining strategies of natural products from sponge-associated bacteria [J]. Nat Prod Rep, 2025. doi:10.1039/D5NP00013K . |
| [39] | Neun S, Kaminski TS, Hollfelder F. Single-cell activity screening in microfluidic droplets [J]. Methods Enzymol, 2019, 628: 95-112. |
| [40] | Zhang Q, Wang TT, Zhou Q, et al. Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms [J]. Sci Rep, 2017, 7: 41192. |
| [41] | Beneyton T, Thomas S, Griffiths AD, et al. Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica [J]. Microb Cell Fact, 2017, 16(1): 18. |
| [42] | Staskiewicz K, Dabrowska-Zawada M, Kozon L, et al. Droplet microfluidic system for high throughput and passive selection of bacteria producing biosurfactants [J]. Lab Chip, 2024, 24(7): 1947-1956. |
| [43] | Saito K, Ota Y, Tourlousse DM, et al. Microdroplet-based system for culturing of environmental microorganisms using FNAP-sort [J]. Sci Rep, 2021, 11(1): 9506. |
| [44] | Batani G, Bayer K, Böge J, et al. Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria [J]. Sci Rep, 2019, 9(1): 18618. |
| [45] | Silverman AP, Kool ET. Quenched autoligation probes allow discrimination of live bacterial species by single nucleotide differences in rRNA [J]. Nucleic Acids Res, 2005, 33(15): 4978-4986. |
| [46] | Sutermaster BA, Darling EM. Considerations for high-yield, high-throughput cell enrichment: fluorescence versus magnetic sorting [J]. Sci Rep, 2019, 9(1): 227. |
| [47] | Adekanmbi EO, Srivastava SK. Dielectrophoretic applications for disease diagnostics using lab-on-a-chip platforms [J]. Lab Chip, 2016, 16(12): 2148-2167. |
| [48] | Kaminski TS, Scheler O, Garstecki P. Droplet microfluidics for microbiology: techniques, applications and challenges [J]. Lab Chip, 2016, 16(12): 2168-2187. |
| [49] | Wang Y, Huang WE, Cui L, et al. Single cell stable isotope probing in microbiology using Raman microspectroscopy [J]. Curr Opin Biotechnol, 2016, 41: 34-42. |
| [50] | Zhang J, Ren LH, Zhang L, et al. Single-cell rapid identification, in situ viability and vitality profiling, and genome-based source-tracking for probiotics products [J]. Imeta, 2023, 2(3): e117. |
| [51] | Berry D, Mader E, Lee TK, et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells [J]. Proc Natl Acad Sci USA, 2015, 112(2): E194-E203. |
| [52] | Lyu YK, Yuan XF, Glidle A, et al. Automated Raman based cell sorting with 3D microfluidics [J]. Lab Chip, 2020, 20(22): 4235-4245. |
| [53] | Tang XS, Wu QY, Shang LD, et al. Raman cell sorting for single-cell research [J]. Front Bioeng Biotechnol, 2024, 12: 1389143. |
| [54] | Diao ZD, Jing XY, Hou XB, et al. Artificial intelligence-assisted automatic Raman-activated cell sorting (AI-RACS) system for mining specific functional microorganisms in the microbiome [J]. Anal Chem, 2024, 96(46): 18416-18426. |
| [55] | Huang WE, Ward AD, Whiteley AS. Raman tweezers sorting of single microbial cells [J]. Environ Microbiol Rep, 2009, 1(1): 44-49. |
| [56] | Wang XX, Xin Y, Ren LH, et al. Positive dielectrophoresis-based Raman-activated droplet sorting for culture-free and label-free screening of enzyme function in vivo [J]. Sci Adv, 2020, 6(32): eabb3521. |
| [57] | Brouzes E, Medkova M, Savenelli N, et al. Droplet microfluidic technology for single-cell high-throughput screening [J]. Proc Natl Acad Sci USA, 2009, 106(34): 14195-14200. |
| [58] | Hu BY, Xu P, Ma L, et al. One cell at a time: droplet-based microbial cultivation, screening and sequencing [J]. Mar Life Sci Technol, 2021, 3(2): 169-188. |
| [59] | Lindström S, Andersson-Svahn H. Single-cell culture in microwells [J]. Methods Mol Biol, 2012, 853: 41-52. |
| [60] | Hu JQ, Chen GJ, Xue CL, et al. RSPSSL: a novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization [J]. Light Sci Appl, 2024, 13(1): 52. |
| [61] | Li JB, Zhang DY, Li B, et al. Identifying the active phenanthrene degraders and characterizing their metabolic activities at the single-cell level by the combination of magnetic-nanoparticle-mediated isolation, stable-isotope probing, and Raman-activated cell sorting (MMI-SIP-RACS) [J]. Environ Sci Technol, 2022, 56(4): 2289-2299. |
| [62] | Ouyang Y, Chen DM, Fu Y, et al. Direct cell extraction from fresh and stored soil samples: Impact on microbial viability and community compositions [J]. Soil Biol Biochem, 2021, 155: 108178. |
| [63] | Jing XY, Gong YH, Xu T, et al. One-cell metabolic phenotyping and sequencing of soil microbiome by Raman-activated gravity-driven encapsulation (RAGE) [J]. mSystems, 2021, 6(3): e0018121. |
| [64] | Xu JB, Luo YJ, Wang JK, et al. Artificial intelligence-aided rapid and accurate identification of clinical fungal infections by single-cell Raman spectroscopy [J]. Front Microbiol, 2023, 14: 1125676. |
| [65] | Du JJ, Su YP, Qian CX, et al. Raman-guided subcellular pharmaco-metabolomics for metastatic melanoma cells [J]. Nat Commun, 2020, 11(1): 4830. |
| [66] | Renesto P, Crapoulet N, Ogata H, et al. Genome-based design of a cell-free culture medium for Tropheryma whipplei [J]. Lancet, 2003, 362(9382): 447-449. |
| [67] | Armetta J, Li SS, Vaaben TH, et al. Metagenome-guided culturomics for the targeted enrichment of gut microbes [J]. Nat Commun, 2025, 16(1): 663. |
| [1] | JIN Hai-yang, WANG Hui, ZHANG Yan-hui, HU Tian-long, LIN Zhi-bin, LIU Ben-juan, LIN Xing-wu, XIE Zu-bin. Isolation,Screening and Plant Growth-promoting Potential of Nitrogen-fixing Strains from Paddy Soils [J]. Biotechnology Bulletin, 2020, 36(6): 73-82. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||