Biotechnology Bulletin ›› 2013, Vol. 0 ›› Issue (2): 55-60.
• Reviews and Monographs • Previous Articles Next Articles
Mei Zhu Yang Yutao Xu Zhiqing
Received:
2012-10-12
Revised:
2013-02-27
Online:
2013-02-26
Published:
2013-02-27
Contact:
杨予涛,博士,讲师,研究方向:神经生物学;E-mail: yutaoy@ccmu.edu.cn;徐志卿,博士,教授,研究方向:神经生物学;E-mail: zhiqingx@ccmu.edu.cn
Mei Zhu, Yang Yutao, Xu Zhiqing. Roles of POZ-ZF Proteins in Development and Oncogenesis[J]. Biotechnology Bulletin, 2013, 0(2): 55-60.
[1] Albagli O, Dhordain P, Deweindt C, et al. The BTB/POZ domain: a new protein-protein interaction motif common to DNA-and actinbinding proteins[J]. Cell Growth Differ, 1995, 6(3):1193- 1198. [2] Stogios PJ, Downs GS, Jauhal JJ, et al. Sequence and structural analysis of BTB domain proteins[J]. Genome Biol, 2005, 6:R82. [3] Collins T, Stone JR, Williams AJ. All in the family:The BTB/POZ, KRAB, and SCAN domains[J]. Mol Cell Biol, 2001, 21:3609- 3615. [4] David G, Alland L, Hong SH, et al. Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein[J]. Oncogene, 1998, 16: 2549-2556. [5] Melnick A, Carlile G, Ahmad KF, et al. Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors[J]. Mol Cell Biol, 2002, 22:1804-1818. [6] Ahmad KF, Melnick A, Lax S, et al. Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain[J]. Mol Cell, 2003, 12: 1551-1564. [7] Dhordain P, Lin RJ, Quief S, et al. The LAZ3(BCL-6)oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression[J]. Nucleic Acids Res, 1998, 26:4645-4651. [8] Huynh KD, Bardwell VJ. The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT[J]. Oncogene, 1998, 17:2473-2484. [9] Chen Z, Brand NJ, Chen A, et al. Fusion between a novel Kruppellike zinc finger gene and the retinoic acid receptor-α locus due to a variant t(11 ;17)translocation associated with acute promyelocytic leukemia[J]. EMBO J, 1993, 12:1161-1167. [10] Nagy L, Kao HY, Chakravarti D, et al. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histon deacetylase[J]. Cell, 1997, 89(3):373-380. [11] Lin RJ, Nagy L, Inoue S, et al. Role of the histone deactylase complex in acute promyelocytic leukaemia[J]. Nature, 1998, 106:811-814. [12] Grignani F, De Matteis S, Nervi C, et al. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia[J]. Nature, 1998, 391(6669):815-818. [13] Alcalay M, Meani N, Gelmetti V, et al. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair[J]. J Clin Invest, 2003, 112(11):1751-1761. [14] Müller C, Yang R, Park DJ, et al. The aberrant fusion proteins PMLRAR alpha and PLZF-RAR alpha contribute to the overexpression 2013年第2期59 梅竹等:POZ 锌指蛋白在发育和肿瘤发生中的作用 of cyclin A1 in acute promyelocytic leukemia[J]. Blood, 2000, 96:3894-3899. [15] Kwok C, Zeisig BB, Dong S, So CW. Forced homo-oligomerization of RARalpha leads to transformation of primary hematopoietic cells[J]. Cancer Cell, 2006, 9:95-108. [16] Insinga A, Monestiroli S, Ronzoni S, et al. Impairment of p53 acetylation, stability and function by an oncogenic transcription factor[J]. EMBO J, 2004, 23(5):1144-1154. [17] Barna M, Hawe N, Niswander L, Pandolfi PP. Plzf regulates limb and axial skeletal patterning[J]. Nat Genet, 2000, 25:166-172. [18] Barna M, Pandolfi PP, Niswander L. Gli3 and Plzf cooperate in proximal limb patterning at early stages of limb development[J]. Nature, 2005, 436:277-281. [19] Costoya JA, Hobbs RM, Barna M, et al. Essential role of Plzf in maintenance of spermatogonial stem cells[J]. Nat Genet, 2004, 36:653-659. [20] Hobbs RM, Seandel M, Falciatori I, et al. Plzf regulates germline progenitor self-renewal by opposing mTORC1[J]. Cell, 2010, 142(3):468-479. [21] Mikkelsen TS, Xu Z, Zhang X, et al. Comparative epigenomic analysis of murine and human adipogenesis[J]. Cell, 2010, 143 (1):156-169. [22] Pasqualucci L, Bereschenko O, Niu H, et al. Molecular pathogenesis of non-Hodgkin’s lymphoma:the role of Bcl-6, Leuk[J]. Lymphoma, 2003, 44(suppl 3):S5-S12. [23] Cattoretti G, Pasqualucci L, Ballon G, et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice[J]. Cancer Cell, 2005, 7:445-455. [24] Baron BW, Anastasi J, Montag A, et al. The human BCL6 transgene promotes the development of lymphomas in the mouse[J]. Proc Natl Acad Sci USA, 2004, 101:14198-14203. [25] Polo JM, Dell’Oso T, Ranuncolo SM, et al. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells[J]. Nat Med, 2004, 10:1329-1335. [26] Chattopadhyay A, Tate SA, Beswick RW, et al. A peptide aptamer to antagonize BCL-6 function[J]. Oncogene, 2006, 25:2223- 2233. [27] Basso K, Dalla-Favera R. BCL6:master regulator of the germinal center reaction and key oncogene in B cell lymphomagenesis[J]. Adv Immunol, 2010, 105:193-210. [28] Shaffer AL, Yu X, He Y, et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control[J]. Immunity, 2000, 13:199-212. [29] Kojima S, Hatano M, Okada S, et al. Testicular germ cell apoptosis in Bcl6-deficient mice[J]. Development, 2001, 128:57-65. [30] Wales MM, Biel MA, EL Deiry W, et al. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3[J]. Nat Med, 1995, 1(6):570-577. [31] Fujii H, Biel MA, Zhou W, et al. Methylation of the HIC-1 candidate tumor suppressor gene in human breast cancer[J]. Oncogene, 1998, 16:2159-2164. [32] Chen WY, Zeng X, Carter MG, et al. Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors[J]. Nat Genet, 2003, 33:197-202. [33] Chen W, Cooper TK, Zahnow CA, et al. Epigenetic and genetic loss of Hic1 function accentuates the role of p53 in tumorigenesis[J]. Cancer Cell, 2004, 6:387-398. [34] Chen WY, Wang DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-Dependent DNA-damage responses[J]. Cell, 2005, 123(3):437-448. [35] Abouzeid HE, Kassem AM, Abdel Wahab AH, et al. Promoter hypermethylation of RASSF1A, MGMT, and HIC-1 genes in benign and malignant colorectal tumors[J]. Tumour Biol, 2011, 32(5): 845-852. [36] Carter MG, Johns MA, Zeng X, et al. Mice deficient in the candidate tumor suppressor gene Hic1 exhibit developmental defects of structures affected in the Miller-Dieker syndrome[J]. Hum Mol Genet, 2000, 9:413-419. [37] Reynolds AB, Carnahan RH. Regulation of cadherin stability and turnover by p120ctn:implications in. disease and cancer[J]. Semin Cell Dev Biol, 2004, 15:657-663. [38] Buck-Koehntop BA, Martinez-Yamout MA, Jane Dyson H, Wright PE. Kaiso uses all three zinc fingers and adjacent sequence motifs for high affinity binding to sequence-specific and methyl-CpG DNA targets[J]. FEBS Lett, 2012, 586(6):734-739. [39] Spring CM, Kelly KF, O’Kelly I, et al. The catenin p120ctn inhibits Kaiso-mediated transcriptional repression of the beta-catenin/TCF target gene matrilysin[J]. Exp Cell Res, 2005, 305(2):253- 265. [40] Lopes EC, Valls E, Figueroa ME. Kaiso contributes to DNA 生物技术通报 Biotechnology Bulletin 2013年第2期60 methylation-dependent silencing of tumor suppressor genes in colon cancer cell lines[J]. Cancer Res, 2008, 68(18):7258-7263. [41] Zhang PX, Wang Y, Liu Y, et al. p120-catenin isoform 3 regulates subcellular localization of Kaiso and promotes invasion in lung cancer cells via a phosphorylation-dependent mechanism[J]. Int J Oncol, 2011, 38(6):1625-1635. [42] Kim SW, Park JI, Spring CM, et al. Non-canonical Wnt signals are modulated by the Kaiso transcriptional repressor and p120- catenin[J]. Nat Cell Biol, 2004, 6(12):1212-1220. [43] Park JI, Kim SW, Lyons JP, et al. Kaiso/p120-catenin and TCF/ beta-catenin complexes coordinately regulate canonical Wnt gene targets[J]. Dev Cell, 2005, 8(6):843-854. [44] Nusse R. Wnt signaling in disease and in development[J]. Cell Res, 2005, 15:28-32. [45] Iioka H, Doerner SK, Tamai K. Kaiso is a bimodal modulator for Wnt/beta-catenin signaling[J]. FEBS Lett, 2009, 583(4): 627-632. [46] Filion GJ, Zhenilo S, Salozhin S, et al. A family of human zinc finger proteins that bind methylated DNA and repress transcription[J]. Mol Cell Biol, 2006, 26:169-181. [47] Maeda T, Hobbs RM, Merghoub T, et al. Role of the proto-oncogene pokemon in cellular transformation and ARF repression[J]. Nature, 2005, 433:278-285. [48] Zhao ZH, Wang SF, Yu L, et al. Overexpression of Pokemonin nonsmall cell lung cancer and foreshowing tumor biological behavior as well as clinical results[J]. Lung Cancer, 2008, 62(1):113- 119. [49] Aggarwal A, Hunter WJ 3rd, Aggarwal H, et al. Expression of leukemia/lymphoma-related factor(LRF/POKEMON)in human breast carcinoma and other cancers[J]. Exp Mol Pathol, 2010, 89(2):140-148. [50] Aggarwal H, Aggarwal A, Hunter WJ 3rd, et al. Expression of leukemia/lymphoma related factor(LRF/Pokemon)in human benign prostate hyperplasia and prostate cancer[J]. Exp Mol Pathol, 2011, 90(2):226-230. [51] Jeon BN, Yoo JY, Choi WI, et al. Proto-oncogene FBI-1(Pokemon/ ZBTB7A)represses transcription of the tumor suppressor Rb gene via binding competition with Sp1 and recruitment of corepressors[J]. J Biol Chem, 2008, 283:33199-33210. [52] Zu X, Ma J, Liu H, et al. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression[J]. Breast Cancer Res, 2011, 13:R26. [53] Cui JJ, Yang YT, Zhang CF, et al. FBI-1 functions as a novel AR co-repressor in prostate cancer cells[J]. Cell Mol Life Sci, 2011, 68:1091-1103. [54] Laudes M, Bilkovski R, Oberhauser F, et al. Transcription factor FBI-1 acts as a dual regulator in adipogenesis by coordinated regulation of cyclin-A and E2F-4[J]. J Mol Med, 2008, 86(5): 597-608. (责任编辑 狄艳红) |
[1] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[2] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[3] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[4] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[5] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[6] | SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation [J]. Biotechnology Bulletin, 2023, 39(3): 1-12. |
[7] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[8] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[9] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[10] | ZHAO Yan-xia, ZHANG Jing-ying, SUN Jun-fei, WANG Jiang-hui, SUN Jia-bo, LV Xiao-hui. Analyses of Transcription and Metabolic Differential in the Flower Development Processes of ‘Rose rugosa cv. Plena’ [J]. Biotechnology Bulletin, 2023, 39(3): 184-195. |
[11] | CUI Jun-mei, WEI Jia-ping, DONG Xiao-yun, WANG Ying, ZHENG Guo-qiang, LIU Zi-gang. PIP/PIPL: A Kind of Endogenous Plant Peptide Regulating Plant Stress Response and Development [J]. Biotechnology Bulletin, 2023, 39(3): 35-42. |
[12] | WANG Xiao-mei, YANG Xiao-wei, LI Hui-shang, HE Wei, XIN Zhu-lin. Development Status of Synthetic Biology in Globe and Its Enlightenment [J]. Biotechnology Bulletin, 2023, 39(2): 292-302. |
[13] | MA Qiu-yu, YUAN Fang. Research Progress in Salt Gland Secretion and Development in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 74-85. |
[14] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[15] | WANG Chen-yu, ZHOU Chu-yuan, HE Di, FAN Zi-hao, WANG Meng-meng, YANG Liu-yan. Role and Mechanism of Polyphosphate in the Microbial Response to Environmental Stresses [J]. Biotechnology Bulletin, 2023, 39(11): 168-181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||