Biotechnology Bulletin ›› 2013, Vol. 0 ›› Issue (6): 32-38.
Previous Articles Next Articles
Hu Qingliang, Li Lingjuan, Wang Xiao
Received:
2012-12-17
Revised:
2013-06-20
Online:
2013-06-20
Published:
2013-06-20
Hu Qingliang, Li Lingjuan, Wang Xiao. Progress in the Mechanism of Host Cell Apoptosis Induced by Pathogen Virulence Factors[J]. Biotechnology Bulletin, 2013, 0(6): 32-38.
[1] Lancellotti M, Pereira RF, Cury G, et al. Pathogenic and opportunistic respiratory bacteria-induced apoptosis[J]. Braz J Infect Dis, 2009, 13(3):226-31. [2] Higgs BW, Dileo J, Chang WE, et al. Modeling the effects of a Stap-hylococcal Enterotoxin B (SEB)on the apoptosis pathway[J]. BMC Microbiol, 2006, 6(1):48-59. [3] Shinohara F, Sato K, Suzuki M, et al. Role of caspase in CD80 expression of superantigen-stimulated monocytes[J]. Int J Mol Med, 2004, 14(2):241-246. [4] Ruiz-Ruz C, Ruiz de Almodovar C, Rodriguez A, et al. The up-regulation of human caspase-8 by interferon-gamma in breast tumor cells requires the induction and action of the transcription factor interferon regulatory factor-1[J]. J Biol Chem, 2004, 279(19):19712-19720. [5] Genestier AL, Michallet MC, Prévost G, et al. Staphylococcus aureus Panton-Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils[J]. J Clin Invest, 2005, 115(11):3117-3127. [6] Skals M, Leipziger J, Praetorius HA. Haemolysis induced by α-toxin from Staphylococcus aureus requires P2X receptor activation[J]. Pflugers Arch, 2011, 462(5):669-679. [7] Jonas D, Walev I, Berger T, et al. Novel path to apoptosis:Small transmembrane pores created by staphylococcal alpha-toxin in Tlymphocytes evoke internucleosomal DNA degradation[J]. InfectImmun, 1994, 62(4):301-304. [8] Bantel H, Sinha B, Domschke W, et al. alpha-Toxin is a mediator of Staphylococcus aureus induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling[J]. J Cell Biol, 2001, 155(4):637-648. [9] Norén T. Clostridium difficile and the disease it causes[J]. Methods Mol Biol, 2010;646:9-35. [10] 刘小红, 沈阳. 艰难梭菌毒素A对胆管癌细胞株 FRH-0201 增殖和凋亡的影响 . 现代生物医学进展, 2011, 60:1673-6273. [11] Li P, Chen C, Xi YM, et al. Apoptosis-inducing effect of clostridium difficile toxin A on K562 cells and its mechanism[J]. Zhong guo Shi Yan Xue Ye Xue Za Zhi, 2011, 19(3):638-642. [12] Morimoto H, Bonarida S. Diphtheria toxin and Pseudomonas alldon toxin mediated apoptosis[J]. J Immnol, 1992, 149(6):2089-2094. [13] Bassinet L, Fitting C, Housset B, et al. Bordetella pertussis adenylate cyclase-hemolysin induces interleukin-6 secretion by human tracheal epithelial cells[J]. Infect Immun, 2004, 72(9):5530-5533. [14] Ohnishi H, Miyake M, Kamitani S, et al. The morphological changes in cultured cells caused by Bordetella pertussis adenylate cyclase toxin[J]. FEMS Microbiol Lett, 2008, 279(2):174-179. [15] Gray MC, Donato GM, Jones FR, et al. Newly secreted adenylatecy-clase toxin is responsible for intoxication of target cells by Bordete-lla pertussis[J]. Mol Microbiol, 2004, 53(6):1709-1719. [16] Hewlett EL, Donato GM, Gray MC. Macrophage cytotoxicity prod-uced by adenylate cyclase toxin from Bordetella pertussis:more than just making cyclic AMP[J]. Mol Microbiol, 2006, 59(2):447-459. [17] Knapp O, Maier E, Masín J, et al. Pore formation by the Bordetella adenylate cyclase toxin in lipid bilayer membranes:role of voltage and Ph[J]. Biochim Biophys Acta, 2008, 1778(1):260-269. [18] Ohnishi H, Miyake M, Kamitani S, et al. The morphological changes in cultured cells caused by Bordetella pertussis adenylatecyclase toxin[J]. FEMS Microbiol Lett, 2008, 279(2):174-179. [19] Nakagawa I, Nakata M, Kawabata S, et al. Regulated expression of the Shiga toxin B gene induces apoptosis in mammalian fibroblastic cells[J]. Mol Microbiol, 1999, 33(6):1190-1199. [20] Lentz EK, Leyva-Illades D, Lee MS, et al. Differential response of the human renal proximal tubular epithelial cell line HK-2 to Shiga toxin types 1 and 2[J]. Infect Immun, 2011, 79:3527-3540. [21] Lee SY, Lee MS, Cherla RP, Tesh VL. Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells[J]. Cell Microbiol, 2008, 10:770-780. [22] Pijpers AH, van Setten PA, van den Heuvel LP, et al. Verocytotoxin-induced apoptosis of human microvascular endothelial cells[J]. J Am Soc Nephrol, 2001, 12(4):767-778. [23] LI H, Wang JH, HE P, et al . Mechanism and effect of Escherichia coli infection on apoptosis of U937 cell[J]. Journal of Xinxiang Medical College, 2011, 28(3):276-278. [24] Chai J, Du C, Wu J W, et al. Structural and biochemical basis of apoptosis activation by Smac / DIABL[J]. Nature, 2000, 406(6798):855-862. [25] 仇文颖, 王兴翠, 尚宏伟, 等. 内毒素所致SIRS/ MODES小鼠脾细胞损伤的形态学观察[J]. 中国组织化学与细胞化学, 2002, 11(2):142-145. [26] Matsuno K, Iwata K, Matsumoto M, et al. NOX1/NADPH oxidase is involved in endotoxin-induced cardiomyocyte apoptosis[J]. Free Radic Biol Med, 2012, 53(9):1718-1728. [27] Chin AC, Flynn AN, Fedwick JP, et al. The role of caspase-3 in lipopolysacc haride-mediated disruption of intestinal epithelial tight junctions[J]. Can J Physiol Pharmacol, 2006, 84 (10):1043-1050. [28] 刘婷婷, 马丽娜, 李凤云, 等. 伤寒沙门菌诱导巨噬细胞凋亡机制的探讨[J]. 中国人兽共患病学报, 2010, 26 (3):239-242. [29] Panaro MA, Pricci M, Meziani F, et al. Cyclooxygenase-2-derived prostacyclin protective role on endotoxin-induced mouse card-iomyocyte mortality[J]. Cardiovasc Toxicol, 2011, 11(4):347-356. [30] 孙阳, 李凤云, 王朝夫, 等 . 痢疾志贺菌D15及其L型内毒素致细胞凋亡的研究[J]. 蚌埠医学院学报, 2002, 27(4):287-294. [31] Hilbi H, Moss J, Hersh D, et al. Shigella-induced apoptosis dependent on caspaes-1 which binds to IpaB[J] . J Biol Chem, 1998, 273:32895-32900. [32] Mantis N, Prevost MC, Sansonetti P. Analysis of epithelial cell stress response during infection by Shigella Flexner i [J]. Infect Immun, 1996, 64:2474-2482. [33] Scheuring UJ. Sabzevari H, Corbeil J, et al. Differential expression profiles of apoptosis affecting genes in HIV-infected cell lines and patients T cells[J]. AIDS, 1999, 13(2):167-175. [34] Trulzsch K, Geginat G, Sporleder T, et al. Yersinia outer protein P inhibits CD8 T cell priming in the mouse infection model[J] . J Immunol, 2005, 174(7):4244-4251. [35] Lancellotti M, BrocchiM, da Silveira WD . Bacteria-induced apoptosis:An approach to bacterial pathogenesis[J]. Braz J Morphol, Sci, 2006, 23(1):75-86. [36] Zhao YX, Lajoie G, Zhang H, et al. Tumor necrosis factor receptor p55-deficient mice respond to acute Yersinia enterocolitica infection with less apoptosis and more effective host resistance[J]. Infect Immunol, 2000, 68(3):1243-1251. [37] Pandey AK, Sodhi A. Recombinant YopJ induces apoptosis in murine peritoneal macrophages in vitro:involvement of mitochondrial death pathway[J]. Int Immunol, 2009, 21 (11):1239-1249. [38] Hao YH, Wang Y, Burdette D, et al. Structural requirements for Yersinia YopJ inhibition of MAP kinase pathways[J]. PLoS One, 2008, 23(1):1375. [39] Ricote M, Garcia-Tunon I, Fraile B, et al. P38 MAPK protects against TNF-alpha-provoked apoptosis in LNCaP prostatic cancer cells[J]. Apoptosis, 2006, 11(11):1969-1975. [40] Hersh D, Monack DM, Smith MR, et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1[J]. Proc Natl Acad Sci USA, 1999, 96(5):2396-2401. [41] Huang R, Wu S, Zhang X, et al. Molecular analysis and identifica-tion of virulence gene on pRST98 from multi-drug resistant Salmo-nella typhi[J]. Cell & Mol Immunol, 2005, 2(2):136-140. [42] Browne SH, Hasegawa P, Okamoto S, et al. Identification of Salmonella SPI-2 secretion system components required for SpvB-mediated cytotoxicity in macrophages and virulence in mice[J]. FEMS Immunol Med Microbiol, 2008, 52(2):194-201. [43] Miethke T, Wahl C, Heeg K, et al. T cell mediated lethal shock triggered in mice by the superantigen staphylococcal enterotoxin B:critical role of tumor necrosis factor[J]. J Exp Med, 1992, 175:91-98. [44] Xu SX, Mc Cormick JK. Staphylococcal superantigens in colonization and disease[J]. Front Cell Infect Microbiol, 2012, 2:52-57. [45] Van Zele T, Gevaert P. Role of Staphylococcus aureus in upper respiratory infections[J]. Verh K Acad Geneeskd Belg, 2008, 70(5-6):369-378. [46] 王红兵, 杨策尧, 曾卫玲. 超抗原SPE对SLE患者外周血T淋巴细胞增殖和凋亡作用的研究[J]. 中国皮肤性病学杂志, 2005, 19 (7):395-397. [47] Dauwalder O, Pachot A, Cazalis MA, et al. Early kinetics of the transcriptional response of human leukocytes to staphylococcal superantigenic enterotoxins A and G[J]. Microb Pathog, 2009, 47(3):171-176. [48] HanCH, Gong Z, Hao L, et al. Mechanism of Monoclonal antibody-coupled Staphylococcus superantigen-a induced apoptosis in human bladder cancer cells[J]. Cell Biochemistry and Biophysics, 2011, 61 (3):679-684. [49] Towhid ST, Nega M, Schmidt EM, et al. Stimulation of platelet apoptosis by peptidoglycan from Staphylococcus aureus 113[J]. Apoptosis,  2012, 17(9):998-1008. [50] Engedal N, Skotland T, Torgersen M L, et al. Shiga toxin andits use in targeted cancer therapy and imaging. Microb[J]. Biotechnol, 2011, 4:32-46. |
[1] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
[2] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[3] | JIANG Hai-rong, CUI Ruo-qi, WANG Yue BAI, Miao ZHANG, Ming-lu , REN Lian-hai. Isolation, Identification and Degradation Characteristics of Functional Bacteria for NH3 and H2S Degradation [J]. Biotechnology Bulletin, 2023, 39(9): 246-254. |
[4] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[5] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[6] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[7] | FANG Lan, LI Yan-yan, JIANG Jian-wei, CHENG Sheng, SUN Zheng-xiang, ZHOU Yi. Isolation, Identification and Growth-promoting Characteristics of Endohyphal Bacterium 7-2H from Endophytic Fungi of Spiranthes sinensis [J]. Biotechnology Bulletin, 2023, 39(8): 272-282. |
[8] | GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG [J]. Biotechnology Bulletin, 2023, 39(8): 291-306. |
[9] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[10] | XIE Tian-peng, ZHANG Jia-ning, DONG Yong-jun, ZHANG Jian, JING Ming. Effect of Premature Bolting on the Rhizosphere Soil Microenvironment of Angelica sinensis [J]. Biotechnology Bulletin, 2023, 39(7): 206-218. |
[11] | MA Jun-xiu, WU Hao-qiong, JIANG Wei, YAN Geng-xuan, HU Ji-hua, ZHANG Shu-mei. Screening and Identification of Broad-spectrum Antagonistic Bacterial Strains Against Vegetable Soft Rot Pathogen and Its Control Effects [J]. Biotechnology Bulletin, 2023, 39(7): 228-240. |
[12] | YOU Ling, JIAN Xiao-ping, FAN Fang-yong, YANG Zhi, WANG Tao. Ecological Monitoring of Pit Mud in Yibin Strong-fragrance Baijiu-producing Region [J]. Biotechnology Bulletin, 2023, 39(7): 254-265. |
[13] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[14] | LI Dian-dian, SU Yuan, LI Jie, XU Wen-tao, ZHU Long-jiao. Progress in Selection and Application of Antibacterial Aptamers [J]. Biotechnology Bulletin, 2023, 39(6): 126-132. |
[15] | GUO Yi-ting, ZHAO Wen-ju, REN Yan-jing, ZHAO Meng-liang. Identification and Analysis of NAC Transcription Factor Family Genes in Helianthus tuberosus L. [J]. Biotechnology Bulletin, 2023, 39(6): 217-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||