[1] Capuco AV, Ellis SE, Hale SA, et al. Lactation persistency: insights from mammary cell proliferation studies[J]. J Anim Sci, 2003, 81 (Suppl. 3): 18-31. [2] Alford D, Taylor-Papadimitriou J. Cell adhesion molecules in the normal and cancerous mammary gland[J]. Journal of Mammary Gland Biology and Neoplasia, 1996, 1(2): 207-218. [3] Meyer MJ, Capuco AV, Ross DA, et al. Developmental and nutritional regulation of the prepubertal bovine mammary gland: II. Epithelial cell proliferation, parenchymal accretion rate, and all ometric growth[J]. J Dairy Sci, 2006, 89(11): 4298-4304. [4] Loor JJ, Cohick WS. ASAS centennial paper: Lactation biology for the twenty-first century[J]. J Anim Sci, 2009, 87(2): 813-824. [5] Bionaz M, Periasamy K, Rodriguez-Zas SL, et al. Old and new stories: revelations from functional analysis of the bovine mammary transcriptome during the lactation cycle[J]. PLOS ONE, 2012, 7 (3): e33268. [6] 李庆章等. 乳腺发育与泌乳生物学[M]. 北京: 科学出版社,2009. [7] 侯晓明, 李庆章, 黄田英. 泌乳期奶牛乳腺基因表达谱研究[J].中国科学: 生命科学, 2010(3): 231-238. [8] Naylor S, Culbertson AW, Valentine SJ. Towards a systems level analysis of health and nutrition[J]. Current Opinion in Biotechnology, 2008, 19(2): 100-109. [9] Rudolph MC, McManaman JL, Hunter L, et al. Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy,lactation, and involution[J]. J Mammary Gland Biol Neoplasia,2003, 8(3): 287-307. [10] Lemay DG, Neville MC, Rudolph MC, et al. Gene regulatory networks in lactation: identification of global principles using bioinformatics[J]. BMC Syst Biol, 2007, 1: 56. [11] Bionaz M, Periasamy K, Rodriguez-Zas SL, et al. A novel dynamic impact approach(DIA)for functional analysis of timecourse omics studies: validation using the bovine mammary transcriptome[J]. PloS One, 2012, 7(3): e32455. [12] Bionaz M, Loor JJ. Gene networks driving bovine mammary protein synthesis during the lactation cycle[J]. Bioinform Biol Insights,2011, 5: 83-98. [13] Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion[J]. J Mammary Gland Biol Neoplasia, 2002, 7(1): 49-66. [14] Herbein JH, Aiello RJ, Eckler LI, et al. Glucagon, insulin, growth hormone, and glucose concentrations in blood plasma of lactating dairy cows[J]. J Dairy Sci, 1985, 68(2): 320-325. [15] Menzies KK, Lefèvre C, Macmillan KL, et al. Insulin regulates milk protein synthesis at multiple levels in the bovine mammary gland[J]. Functional & Integrative Genomics, 2009, 9(2): 197-217. [16] Menzies KK, Lee HJ, Lefèvre C, et al. Insulin, a key regulator of hormone responsive milk protein synthesis during lactogenesis in murine mammary explants[J]. Functional & Integrative Genomics, 2010, 10(1): 87-95. [17] Wang X, Proud CG. The mTOR pathway in the control of protein synthesis[J]. Physiology, 2006, 21(5): 362-369. [18] Mo shel Y, R h oads RE, B ara sh I. Rol e of amino a cids in translational mechanisms governing milk protein synthesis in murine and ruminant mammary epithelial cells[J]. Journal of Cellular Biochemistry, 2006, 98(3): 685-700. [19] Kimball SR, Jefferson LS. New functions for amino acids: effects on gene transcription and translation[J]. The American Journal of Clinical Nutrition, 2006, 83(2): 500S-507S. [20] Reynolds CK, Harmon DL, Cecava MJ. Absorption and delivery of nutrients for milk protein synthesis by portal-drained viscera[J].Journal of Dairy Science, 1994, 77(9): 2787-2808. [21] Wakao H, Gouilleux F, Groner B. Mammary gland factor(MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response[J]. The EMBO Journal, 1994, 13(9): 2182. [22] Wh e e ler T T , Br o a dh ur st MK , S a d o w sk i HB, et al. S t a t5 phosphorylation status and DNA-binding activity in the bovine and murine mammary glands[J]. Molecular and Cellular Endocrinology, 2001, 176(1): 39-48. [23] McFadden JW, Corl BA. Activation of AMP-activated protein kinase(AMPK)inhibits fatty acid synthesis in bovine mammary epithelial cells[J]. Biochemical and Biophysical Research Communications, 2009, 390(3): 388-393. [24] Anderson SM, Rudolph MC, McManaman JL, et al. Secretory activation in the mammary gland: it’s not just about milk protein synthesis[J]. Breast Cancer Res, 2007, 9: 204-217. [25] Bionaz M, Loor JJ. Gene networks driving bovine milk fat synthesis during the lactation cycle[J]. BMC Genomics, 2008, 9(1): 366. [26] Zhao FQ, Keating AF. Expression and regulation of glucose transporters in the bovine mammary gland[J]. Journal of Dairy Science, 2007, 90: E76-E86. [27] Woodward WA, Chen MS, Behbod F, et al. On mammary stem cells[J]. Journal of Cell Science, 2005, 118(16): 3585-3594. [28] Lewis MT, Veltmaat JM. Next stop, the twilight zone: hedgehog network regulation of mammary gland development[J]. Journal of Mammary Gland Biology and Neoplasia, 2004, 9(2): 165-181. [29] Zarzynska J, Motyl T. Apoptosis and autophagy in involuting bovine mammary gland[J]. J Physiol Pharmacol, 2008, 59(Suppl 9): 275-288. [30] Purup S, Vestergaard M, O Pedersen L, Sejrsen K. Biological activity of bovine milk on proliferation of human intestinal cells[J]. J Dairy Res, 2007, 74(1): 58-65. [31] Liu F. Receptor-regulated Smads in TGF-beta signaling[J].Frontiers in Bioscience: a Journal and Virtual Library, 2003, 8: s1280-303. [32] Wang X, Proud CG. The mTOR pathway in the control of protein synthesis[J]. Physiology(Bethesda), 2006, 21: 362-369. [33] Fortini ME. Notch signaling: the core pathway and its posttranslational regulation[J]. Dev Cell, 2009, 16(5): 633-647. [34] Callahan R, Egan SE. Notch signaling in mammary development and oncogenesis[J]. J Mammary Gland Biol Neoplasia, 2004, 9 (2): 145-163. |