Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (1): 32-38.
• Papers • Previous Articles Next Articles
Yin Wen1, Fu Xu2, Li Ping1
Received:
2013-09-05
Online:
2014-01-23
Published:
2014-01-23
Yin Wen, Fu Xu, Li Ping. Application Research Progress of Proteomics[J]. Biotechnology Bulletin, 2014, 0(1): 32-38.
[1] Pandey A, Mann M. Proteomics to study genes and genomics[J].Nature, 2000, 405(6788): 837-846. [2] Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene product mapping of the Mollicutes: Mycoplasma genitalium[J].Electrophoresis, 1995, 16(7): 1090-1094. [3] Anderson L, Seilhammer J. A comparison of selected mRNA and protein abundances in human liver[J]. Electrophoresis, 1997,18: 533-537. [4] Humphrey-Smith I, Cordwell SJ, et al. Proteome research: complementarity and limitations with respect to the RNA and DNA worlds[J]. Electrophoresis, 1997, 18: 1217-1242. [5] 王英超, 党源, 李晓艳, 等. 蛋白质组学及其技术发展[J]. 生 物技术通讯, 2010, 21(1): 139-144. [6] O’Farrell P. High resolution two-dimensional electrophoresis of proteins[J]. J Biol Chem, 1975, 250: 4007-4021. [7] ünlü M, Morgan ME, Minden JS. Difference gel electrophoresis. A single gel method for detecting changes in protein extracts[J].Electrophoresis, 1997, 18: 2071-2077. [8] Chen L, Fatima S, Peng J, et al. SELDI protein chip technology for the detection of serum biomarkers for liver disease[J]. Protein Pept Lett, 2009, 16(5): 467-472. [9] Lei T, Zhao X, Jin S, et al. Discovery of Potential bladder cancer biomarkers by comparative urine proteomics and analysis[J].Clin Genitourin Cancer, 2013, 1(1): 56-62. [10] McKinney KQ, Lee JG, Sindram D, et al. Identification of differentially expressed proteins from primary versus metastatic pancreatic cancer cells using subcellular proteomics[J]. Cancer Genomics Proteomics, 2012, 9(5): 257-263. [11] Tetaz R, Trocmé C, Roustit M, et al. Predictive diagnostic of chronic allograft dysfunction using urinary proteomics analysis[J].Ann Transplant, 2012 ;17(3): 52-60. [12] Brea D, Sobrino T, Blanco M, et al. Usefulness of haptoglobin and serum amyloid A proteins as biomarkers for atherothrombotic ischemic stroke diagnosis confirmation[J]. Atherosclerosis,2009, 205: 561-567. [13] Wen JJ, Zago MP, Nu?ez S, et al. Serum proteomic signature of human chagasic patients for the identification of novel potential protein biomarkers of disease[J]. Mol Cell Proteomics, 2012,11: 435-452. [14] Kikuchi T, Hassanein M, Amann JM, et al. In-depth proteomic analysis of nonsmall cell lung cancer to discover molecular targets and candidate biomarkers[J]. Mol Cell Proteomics, 2012, 11(10): 916-932. [15] Polprasert C, Chiangjong W, Thongboonkerd V. Marked changes in red cell membrane proteins in hereditary spherocytosis: a proteomics approach[J]. Mol Biosyst, 2012, 8(9): 2312-2322. [16] Yang H, Qiao H, Tian X. Proteomic analysis of cerebral synaptosomes isolated from rat model of alzheimer’s disease[J]. Indian J Exp Biol, 2011, 49(2): 118-124. [17] Rabilloud T, Sturb JM, Carte N, et al.Comparative proteomics as a new tool for exploring human mitochondrial tRNA disorders[J].Biochemistry, 2002, 41(1): 144-150. [18] Huang HQ, Tang J, Zhou ST, et al. Orlistat, a novel potent antitumor agent for ovarian cancer: proteomic analysis of ovarian cancer cells treated with Orlistat[J]. Int J Oncol, 2012, 41(2): 523- 532. [19] Lin ST, Chou HC, Chang SJ, et al. Proteomic analysis of prote ins responsible for the development of doxorubicin resistance in human uterine cancer cells[J]. J Proteomics, 2012, 75(18): 5822- 5847. [20] Li G, Cai F, Yan W, et al. A proteomic analysis of MCLR-induced neurotoxicity: implications for Alzheimer’s disease[J].Toxicol Sci, 2012, 127(2): 485-495. [21] Bauer JA, Chakravanhy AB, Rosenbluth JM, et al. Identification of markers of taxane sensitivity using proteomic and genomic analyses of breast tumors from patients receiving neoadjuvant paclitaxel and radiation[J]. Clin Cancer Res, 2010, 16(2): 681-690. [22] O’Connell K , Prencipe M , O'Neill A, et al. The use of LC-MS to identify differentially expressed proteins in docetaxel-resistant prostate cancer cell lines[J]. Proteomics, 2012, 12(13): 2115-2126. [23] Khatoon A, Rehman S, Oh MW, et al. Analysis of response mechanism in soybean under low oxygen and flooding stresses using gel-base proteomics technique[J]. Mol Biol Rep, 2012, 39(12): 10581-10594. [24] Aghaei K, Ehsanpour AA, Shan A. et al. Proteome analysis of soybean hypoeotyl and root under salt stress[J]. Amino Acids,2009, 36: 91-98. [25] Ngara R, Ndimba R, Borch-Jensen J, et al. Identification and profiling of salinity stress- responsive proteins in Sorghum bicolor seedlings[J]. J Proteomics. 2012, 75(13): 4139-4150. [26] Anne-Catherine V, Wesley V, Bart P, et al. Screening the banana biodiversity for drought tolerance: can an in vitro growth model and proteomics be used as a tool to discover tolerant varieties and understand homeostasis[J].Front Plant Sci, 2012, 3: 176. [27] Koehler G, Wilson RC, Goodpaster JV, et al. Proteomic study of lowtemperature responses in strawberry cultivars(Fragaria×ananassa) that differ in cold tolerance[J]. Plant Physiology, 2012,159: 1787-1805. [28] Zhao P, Nairn AV, Hester S, et al. Proteomic identification of glycosylphosphatidylinositol anchor-dependent membrane proteins elevated in breast carcinoma[J]. J Biol Chem, 2012, 287(30): 25230-25240. [29] Coscia A, Orrù S, Di Nicola P, et al. Detection of cow’s milk proteins and minor components in human milk using proteomics techniques[J]. J Matern Fetal Neonatal Med, 2012, 25(4): 49-51. [30] Hong C, Jiang H, Lü E, et al. Identification of milk component in ancient food residue by proteomics[J]. PLoS One, 2012, 7(5): e37053. [31] Pedreschi R, N?rgaard J, Maquet A. Current challenges in detecting food allergens by shotgun and targeted proteomic approaches: a case study on traces of peanut allergens in baked cookies[J].Nutrients, 2012, 4(2): 132-150. [32] 李明云, 冀德伟, 吴海庆, 等. 大黄鱼肝脏蛋白质组双向电泳 技术的建立及优化[J]. 水产科学, 2010, 29(1): 27-30. [33] Andrade Jde M, Toledo TT, Nogueira SB, et al. 2D-DIGE analysis of mango(Mangifera indica L.)fruit reveals major proteomic changes associated with ripening[J]. J Proteomics, 2012, 75(11): 3331-3341. [34] Fernández-Acero FJ, Colby T, Harzen A, et al. Proteomic analysis of the phytopathogenic fungus Botrytis cinerea during cellulose degradation[J].Proteomics, 2009, 9(10): 2892-2902. [35] Fang X, Chen W, Xin Y, et al. Proteomic analysis of strawberry leaves infected with Colletotrichum fragariae[J]. J Proteomics,2012, 75(13): 4074-4090. [36] Ansong C, Yoon H, Norbeck AD, et al. Proteomics analysis of the causative agent of typhoid fever[J]. J Proteome Res, 2008, 7(2): 546-557. [37] Zhang B, Xu C, Zhou S, et al. Comparative proteomic analysis of a Haemophilus parasuis SC096 mutant deficient in the outer membrane protein P5[J]. Microb Pathog, 2012, 52(2): 117- 124. [38] Tedeschi G, Taverna F, Negri A, et al. Serological proteome analysis of Staphylococcus aureus isolated from sub-clinical mastitis[J].Vet Microbiol, 2009, 134: 388-391. [39] Wolf C, Kusch H, Monecke S, et al. Genomic and proeomic characterization of Staphylococcus aureus mastitis isolates of bovine origin[J]. 2011, 11(12): 2491-2502. [40] Liu C, Zhang A, Guo J, et al. Identification of human host proteins contributing to H5N1 influenza virus propagation by membrane proteomics[J]. J Proteome Res, 2012, 11(12): 5396-5405. [41] Vishvanath T, Jitendraa V, Arti K, et al. Comparative proteomics of inner membrane fraction from carbapenem-resistant Acinetobacter baumannii with a reference strain[J]. PLoS One, 2012, 7(6): e39451. [42] Wang R, Liu X, Küster-Sch?ck E, et al. Proteomic analysis of differences in ectoderm and mesoderm membranes by DIGE[J].J Proteome Res, 2012, 11(9): 4575-4593. [43] Jia XF, Yin L, Feng YL, et al. A dynamic plasma membrane proteome analysis of alcohol-induced liver cirrhosis[J]. Proteome Science, 2012, 10: 39. |
[1] | ZHOU Lu-qi, CUI Ting-ru, HAO Nan, ZHAO Yu-wei, ZHAO Bin, LIU Ying-chao. Application of Chemical Proteomics in Identifying the Molecular Targets of Natural Products [J]. Biotechnology Bulletin, 2023, 39(9): 12-26. |
[2] | SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation [J]. Biotechnology Bulletin, 2023, 39(3): 1-12. |
[3] | ZHAO Ming-ming, TANG Yin, GUO Lei-zhou, HAN Jia-hui, GE Jia-ming, MENG Yong, PING Shu-zhen, ZHOU Zheng-fu, WANG Jin. Function Analysis of Lon1 Protease Involved in High Temperature Stress and Cell Division of Deinococcus radiodurans R1 [J]. Biotechnology Bulletin, 2022, 38(5): 149-158. |
[4] | LI Bing-juan, ZHENG Lu, SHEN Ren-fang, LAN Ping. Proteomic Analysis of RPP1A Involved in the Seedling Growth of Arabidopsis thaliana [J]. Biotechnology Bulletin, 2022, 38(2): 10-20. |
[5] | MIAO Yu-jiao, ZHU Long-jiao, XU Wen-tao. Novel Matrixes for Mass Spectrometry Imaging and Research Progress of It in Analyzing Biological Samples [J]. Biotechnology Bulletin, 2022, 38(12): 156-167. |
[6] | WANG Zhi-bo, WANG Dao-ping, MIAO Lan, LI Ying, PAN Ying-hong, LIU Jian-xun. Comparative Study on Methods of Analyzing Proteome in Blood Samples [J]. Biotechnology Bulletin, 2021, 37(8): 307-318. |
[7] | LIU Juan, ZHU Chun-xiao, XIAO Xue-qiong, MO Chen-mi, WANG Gao-feng, XIAO Yan-nong. Screening of Protein Interacting with Purpureocillium lilacinum Cyclophilin PlCYP6 [J]. Biotechnology Bulletin, 2021, 37(7): 137-145. |
[8] | TIAN He, SHUI Guang-hou. Advances in Analysis Methods of Mass Spectrometry-based Metabolomics [J]. Biotechnology Bulletin, 2021, 37(1): 24-32. |
[9] | YIN Zhi-bin, HUANG Wen-jie, WU Xin-zhou, YAN Shi-juan. Spatially Resolved Metabolomics:Progress and Challenges [J]. Biotechnology Bulletin, 2021, 37(1): 32-51. |
[10] | MENG Li-ná, PENG Chun-ying, LI Tie-dong, LI Bo-sheng. Proteomic ánálysis of Spiruliná plátensis in Response to ársenic Stress [J]. Biotechnology Bulletin, 2020, 36(4): 107-116. |
[11] | LI Kun, LIU Yue, HUANG Peng, YANG Zhi-fang, HU Qian, ZHANG Ying, LI Zhi-hong, LÜ Ye-hui, LIANG Le. Proteomics Study on Spermatogonia Differentiation in Mice [J]. Biotechnology Bulletin, 2020, 36(3): 168-176. |
[12] | ZHANG Liang, CHEN Xiao-qing, SONG Jia-yu, MAO Ran-ran, JIANG Qian-wen, LIN Xiang-min. Comparative Proteomics Analysis of Escherichia coli in Response to Barofloxacin Stress [J]. Biotechnology Bulletin, 2019, 35(3): 103-109. |
[13] | LAI Bo-wen, LIU Bin, LIANG Yong-kang. Research Progress on Food Fraud Using Non-targeted Metabolomics Based on High-resolution Mass Spectrometry [J]. Biotechnology Bulletin, 2019, 35(2): 192-197. |
[14] | LAN Yu-ting, WANG Shuang-Lei, LI Zheng-zhen, FENG Jin-chao, WANG Xiao-dong, SHI Sha. Research Advances in Proteomics of Ammopiptanthus in Responses to Abiotic Stresses [J]. Biotechnology Bulletin, 2019, 35(1): 112-119. |
[15] | HUANG Fang, LIN Xiang-min. Construction of Mutant Strain bamA,bamB and bamD of Aeromonas hydrophila and Their Effects on the Outer Membrane Protein Transportation [J]. Biotechnology Bulletin, 2018, 34(5): 148-153. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||