Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (10): 201-206.

Previous Articles     Next Articles

The Construction of E.coli Engineering Strain for Sialyllactose Production

Jin Wenbin, Zhang Xiaoxiao, Li Yu, Lu Fuping   

  1. Key Laboratory of Industrial Fermentation Microbiology,Ministry of Education,National Engineering Laboratory for Industrial Enzymes,Tianjin Key Laboratory of Industrial Microbiology,the College of Biotechnology,Tianjin University of Science & Technology,Tianjin 300457
  • Received:2014-05-04 Online:2014-10-20 Published:2014-10-17

Abstract: Free sialylated oligosaccharides are known to have anti-infective and immunostimulating properties and also known to promote bifidobacterium proliferation, thus investigating the microbial synthetic route of sialylated oligosaccharides is of great value. Biosynthesis of sialyllactose involves N-acetylglucosamine-6-phosphate-epimerase(neuC), sialic acid synthase(neuB), CMP-Neu5Ac synthetase(neuA)and α-2, 3-sialyltransferase(nst). We engineered a biosynthetic pathway sialyllactose production in E.coli JM109, using the expression vector pSTV29, by coexpressing the α-2, 3-sialyltransferase gene from Neisseria meningitidis with the neuA, neuB and neuC Campylobacter jejuni genes encoding CMP-NeuAc synthetase, sialic acid synthase and N-acetylglucosamine-6-phosphate-epimerase, respectively. Under the optimized fermentation conditions(inoculum volume 2%, 10g/L lactose, fermentation volume 50 mL/250 mL, temperature 34℃, rotation speed 180 r/min, fermentation time 30 h), sialyllactose of 2.45 g/L was obtained. The above results provide a platform for exploring commercial production of sialylated oligosaccharides and its functional analogues in heterogeneous microbial hosts.

Key words: Sialyllactose, E.coli, Metabolic engineering