Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (6): 1-12.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0317
YE Jian-wen, CHEN Jiang-nan, ZHANG Xu, Wu Fu-qing, CHEN Guo-qiang
Received:
2020-03-24
Online:
2020-06-26
Published:
2020-06-28
YE Jian-wen, CHEN Jiang-nan, ZHANG Xu, Wu Fu-qing, CHEN Guo-qiang. Dynamic Control:An Efficient Strategy for Metabolically Engineering Microbial Cell Factories[J]. Biotechnology Bulletin, 2020, 36(6): 1-12.
[1] Martin Vincent JJ, Pitera Douglas J, Withers Sydnor T, et al.Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nature Biotechnology, 2003, 21(7):796-802. [2] Peirú S, Menzella Hugo G, Rodríguez E, et al.Production of the potent antibacterial polyketide erythromycin C in Escherichia coli[J]. Applied and Environmental Microbiology, 2005, 71(5):2539-2547. [3] Aldor IS, Keasling JD .Process design for microbial plastic factories:metabolic engineering of polyhydroxyalkanoates[J]. Current Opinion in Biotechnology, 2003, 14(5):475-483. [4] Xia PF, Ling H, Foo JL, et al.Synthetic genetic circuits for programmable biological functionalities[J]. Biotechnology Advances, 2019, 37(6):107393. [5] Nielsen J, Keasling JD.Engineering cellular metabolism[J]. Cell, 2016, 164(6):1185-1197. [6] Lempp M, Farke N, Kuntz M, et al.Systematic identification of metabolites controlling gene expression in E. coli[J]. Nature Communications, 2019, 10(1):1-9. [7] Kent R, Dixon N.Contemporary tools for regulating gene expression in bacteria[J]. Trends in Biotechnology, 2020, 38(3):316-333. [8] Xu P.Production of chemicals using dynamic control of metabolic fluxes[J]. Current Opinion in Biotechnology, 2018, 53:12-19. [9] Chen X, Liu L.Gene circuits for dynamically regulating metabolism[J]. Trends Biotechnol, 2018, 36(8):751-754. [10] Holtz WJ, Keasling JD.Engineering static and dynamic control of synthetic pathways[J]. Cell, 2010, 140(1):19-23. [11] Ye J, Hu D, Che X, et al.Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)from glucose[J]. Metabolic Engineering, 2018, 47:143-152. [12] Ye J, Hu D, Yin J, et al.Stimulus response-based fine-tuning of polyhydroxyalkanoate pathway in Halomonas[J]. Metabolic Engineering, 2020, 57:85-95. [13] Shen R, Yin J, Ye JW, et al.Promoter engineering for enhanced P(3HB-co-4HB)production by Halomonas bluephagenesis[J]. ACS Synthetic Biology, 2018, 7(8):1897-1906. [14] Li T, Ye J, Shen R, et al.Semirational approach for ultrahigh poly(3-hydroxybutyrate)accumulation in Escherichia coli by combining one-step library construction and high-throughput screening[J]. ACS Synth Biol, 2016, 5(11):1308-1317. [15] Dueber JE, Wu GC, Malmirchegini GR, et al.Synthetic protein scaffolds provide modular control over metabolic flux[J]. Nature Biotechnology, 2009, 27(8):753. [16] Baek JM, Mazumdar S, Lee SW, et al.Butyrate production in engineered Escherichia coli with synthetic scaffolds[J]. Biotechnology and Bioengineering, 2013, 110(10):2790-2794. [17] Zhou H, Vonk B, Roubos JA, et al.Algorithmic co-optimization of genetic constructs and growth conditions:application to 6-ACA, a potential nylon-6 precursor[J]. Nucleic Acids Research, 2015, 43(21):10560-10570. [18] Zhao L, Lu Y, Yang J, et al.Expression regulation of multiple key genes to improve l-threonine in Escherichia coli[J]. Microbial Cell Factories, 2020, 19(1):1-23. [19] Alper H, Miyaoku K, Stephanopoulos G.Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets[J]. Nature Biotechnology, 2005, 23(5):612-616. [20] Yim H, Haselbeck R, Niu W, et al.Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol[J]. Nature Chemical Biology, 2011, 7(7):445. [21] Burgard AP, Pharkya P, Maranas CD.Optknock:a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization[J]. Biotechnology and Bioengineering, 2003, 84(6):647-657. [22] Pharkya P, Maranas CD.An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems[J]. Metabolic Engineering, 2006, 8(1):1-13. [23] Ranganathan S, Suthers PF, Maranas CD.OptForce:an optimization procedure for identifying all genetic manipulations leading to targeted overproductions[J]. PLoS Computational Biology, 2010, 6(4):e1000744. [24] Lee SJ, Lee DY, Kim TY, et al.Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation[J]. Applied Environmental Microbiology, 2005, 71(12):7880-7887. [25] Bro C, Regenberg B, Förster J, et al.In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production[J]. Metabolic Engineering, 2006, 8(2):102-111. [26] Becker J, Zelder O, Häfner S, et al.From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production[J]. Metab Eng, 2011, 13(2):159-168. [27] Salis HM, Mirsky EA, Voigt CA.Automated design of synthetic ribosome binding sites to control protein expression[J]. Nature Biotechnology, 2009, 27, 946-950. [28] Rugbjerg P, Sommer MOA.Overcoming genetic heterogeneity in industrial fermentations[J]. Nat Biotechnol, 2019, 37(8):869-876. [29] Schmitz AC, Hartline CJ, Zhang F.Engineering microbial metabolite dynamics and heterogeneity[J]. Biotechnology Journal, 2017, 12(10):1700422. [30] Shen X, Wang J, Li C, et al.Dynamic gene expression engineering as a tool in pathway engineering[J]. Current Opinion in Biotechnology, 2019, 59:122-129. [31] Lalwani MA, Zhao EM, Avalos JL.Current and future modalities of dynamic control in metabolic engineering[J]. Current Opinion in Biotechnology, 2018, 52:56-65. [32] Immethun CM, DeLorenzo DM, Focht CM, et al. Physical, chemical, and metabolic state sensors expand the synthetic biology toolbox for Synechocystis sp. PCC 6803[J]. Biotechnology and Bioengineering, 2017, 114(7):1561-1569. [33] Cress BF, Trantas EA, Ververidis F, et al.Sensitive cells:enabling tools for static and dynamic control of microbial metabolic pathways[J]. Curr Opin Biotechnol, 2015, 36:205-214. [34] Venayak N, Anesiadis N, Cluett WR, et al.Engineering metabolism through dynamic control[J]. Current Opinion in Biotechnology, 2015, 34:142-152. [35] Zhou L, Ren J, Li Z, et al.Characterization and engineering of a Clostridium glycine riboswitch and its use to control a novel metabolic pathway for 5-aminolevulinic acid production in Escherichia coli[J]. ACS Synthetic Biology, 2019, 8(10):2327-2335. [36] Gao C, Xu P, Ye C, et al.Genetic circuit-assisted smart microbial engineering[J]. Trends Microbiol, 2019, 27(12):1011-1024. [37] Brockman IM, Prather KLJ.Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites[J]. Metabolic Engineering, 2015, 28:104-113. [38] Dahl RH, Zhang F, Alonso-Gutierrez J, et al.Engineering dynamic pathway regulation using stress-response promoters[J]. Nature Biotechnology, 2013, 31(11):1039. [39] Yang Y, Lin Y, Wang J, et al.Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis[J]. Nature Communications, 2018, 9(1):3043. [40] Gupta A, Reizman I MB, Reisch CR, et al.Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit[J]. Nat Biotechnol, 2017, 35(3):273. [41] Zhao EM, Zhang Y, Mehl J, et al.Optogenetic regulation of engineered cellular metabolism for microbial chemical production[J]. Nature, 2018, 555(7698):683-687. [42] Moser F, Borujeni AE, Ghodasara AN, et al.Dynamic control of endogenous metabolism with combinatorial logic circuits[J]. Molecular Systems Biology, 2018, 14(11):e8605. [43] Chen AY, Deng Z, Billings AN, et al.Synthesis and patterning of tunable multiscale materials with engineered cells[J]. Nature Materials, 2014, 13(5):515-523. [44] Wang J, Zhang R, Zhang Y, et al.Developing a pyruvate-driven metabolic scenario for growth-coupled microbial production[J]. Metabolic Engineering, 2019, 55:191-200. [45] Qian S, Cirino PC.Using metabolite-responsive gene regulators to improve microbial biosynthesis[J]. Current Opinion in Chemical Engineering, 2016, 14:93-102. [46] Farmer WR, Liao JC.Improving lycopene production in Escherichia coli by engineering metabolic control[J]. Nature Biotechnology, 2000, 18(5):533-537. [47] Solomon KV, Sanders TM, Prather KLJ.A dynamic metabolite valve for the control of central carbon metabolism[J]. Metabolic Engineering, 2012, 14(6):661-671. [48] Johnson AO, Gonzalez-Villanueva M, Wong L, et al.Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories[J]. Metabolic Engineering, 2017, 44:253-264. [49] DiRusso CC, Heimert TL, Metzger AK. Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A[J]. Journal of Biological Chemistry, 1992, 267(12):8685-8691. [50] Zhang F, Carothers JM, Keasling JD.Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids[J]. Nature Biotechnology, 2012, 30(4):354. [51] Morgan SA, Nadler DC, Yokoo R, et al.Biofuel metabolic engineering with biosensors[J]. Current Opinion in Chemical Biology, 2016, 35:150-158. [52] Mustafi N, Grünberger A, Kohlheyer D, et al. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids[J]. Metabolic Engineering, 2012, 14(4):449-457. [53] Schendzielorz G, Dippong M, Grünberger A, et al. Taking control over control:Use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways[J]. ACS Synthetic Biology, 2014, 3(1):21-29. [54] Maury J, Kannan S, Jensen NB, et al.Glucose-dependent promoters for dynamic regulation of metabolic pathways[J]. Frontiers in Bioengineering and Biotechnology, 2018, 6:63. [55] Farmer WR, Liao JC.Acetate-inducible protein overexpression from the glnAp2 promoter of Escherichia coli[J]. Biotechnology and Bioengineering, 2001, 75(5):504-509. [56] Bulter T, Lee SG, Wong WWC, et al.Design of artificial cell-cell communication using gene and metabolic networks[J]. PNAS, 2004, 101(8):2299-2304. [57] Teo WS, Chang MW.Development and characterization of AND-gate dynamic controllers with a modular synthetic GAL1 core promoter in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2014, 111(1):144-151. [58] Dinh CV, Chen X, Prather KLJ.Development of a quorum-sensing based circuit for control of co-culture population composition in a naringenin production system[J]. ACS Synthetic Biology, 2020. [59] Krishnamurthy M, Hennelly SP, Dale T, et al.Tunable riboregulator switches for post-transcriptional control of gene expression[J]. ACS Synthetic Biology, 2015, 4(12):1326-1334. [60] Harder BJ, Bettenbrock K, Klamt S.Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli[J]. Biotechnology and Bioengineering, 2018, 115(1):156-164. [61] Kim EM, Woo HM, Tian T, et al.Autonomous control of metabolic state by a quorum sensing(QS)-mediated regulator for bisabolene production in engineered E. coli[J]. Metabolic Engineering, 2017, 44:325-336. [62] Dinh CV, Prather KLJ.Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered Escherichia coli[J]. PNAS, 2019, 116(51):25562-25568. [63] Doong SJ, Gupta A, Prather KLJ.Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli[J]. PNAS, 2018, 115(12):2964-2969. [64] Soma Y, Hanai T.Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production[J]. Metabolic Engineering, 2015, 30:7-15. [65] Zhao EM, Suek N, Wilson MZ, et al.Light-based control of metabolic flux through assembly of synthetic organelles[J]. Nature Chemical Biology, 2019, 15(6):589-597. [66] Brockman IM, Prather KLJ.Dynamic metabolic engineering:new strategies for developing responsive cell factories[J]. Biotechnology Journal, 2015, 10(9):1360-1369. [67] Deng J, Chen C, Gu Y, et al.Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis[J]. Metabolic Engineering, 2019, 55:179-190. [68] Cui S, Lv X, Wu Y, et al.Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis[J]. ACS Synthetic Biology, 2019, 8(8):1826-1837. [69] Wu Y, Chen T, Liu Y, et al.Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis[J]. Nucleic Acids Research, 2020, 48(2):996-1009. [70] Lv Y, Qian S, Du G, et al.Coupling feedback genetic circuits with growth phenotype for dynamic population control and intelligent bioproduction[J]. Metab Eng, 2019, 54:109-116. [71] Gu F, Jiang W, Mu Y, et al.Quorum sensing-based dual-function switch and its application in solving two key metabolic engineering problems[J]. ACS Synthetic Biology, 2020, 9(2):209-217. [72] Burg JM, Cooper CB, Ye Z, et al.Large-scale bioprocess competitiveness:the potential of dynamic metabolic control in two-stage fermentations[J]. Current Opinion in Chemical Engineering, 2016, 14:121-136. [73] Liu D, Xiao Y, Evans B S, et al.Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator[J]. ACS Synthetic Biology, 2015, 4(2):132-140. [74] Zargar A, Quan DN, Bentley WE.Enhancing intercellular coordination:Rewiring quorum sensing networks for increased protein expression through autonomous induction[J]. ACS Synthetic Biology, 2016, 5(9):923-928. [75] Shi S, Ang EL, Zhao H.In vivo biosensors:mechanisms, development, and applications[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(7):491-516. [76] Zhang F, Keasling J.Biosensors and their applications in microbial metabolic engineering[J]. Trends Microbiol, 2011, 19(7):323-329. [77] Cao J, Yao Y, Fan K, et al. Harnessing a previously unidentified capability of bacterial allosteric transcription factors for sensing diverse small molecules in vitro[J]. Science Advances, 2018, 4(11):eaau4602. [78] Venayak N, von Kamp A, Klamt S, et al. MoVE identifies metabolic valves to switch between phenotypic states[J]. Nature Communications, 2018, 9(1):1-9. [79] Younger AKD, Su PY, Shepard AJ, et al.Development of novel metabolite-responsive transcription factors via transposon-mediated protein fusion[J]. Protein Eng Des Sel, 2018, 31(2):55-63. [80] Younger AKD, Dalvie NC, Rottinghaus AG, et al.Engineering modular biosensors to confer metabolite-responsive regulation of transcription[J]. ACS Synth Biol, 2017, 6(2):311-325. [81] Ceroni F, Blount BA, Ellis T.Sensing the right time to be productive[J]. Cell Systems, 2016, 3(2):116-117. [82] Pinto D, Vecchione S, Wu H, et al.Engineering orthogonal synthetic timer circuits based on extracytoplasmic function σ factors[J]. Nucleic Acids Res, 2018, 46(14):7450-7464. [83] Meyer AJ, Segall-Shapiro TH, Glassey E, et al.Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors[J]. Nature Chemical Biology, 2019, 15(2):196-204. [84] Tan D, Wu Q, Chen JC, et al.Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates[J]. Metabolic Engineering, 2014, 26:34-47. [85] Dai Z, Lee A J, Roberts S, et al.Versatile biomanufacturing through stimulus-responsive cell-material feedback[J]. Nature Chemical Biology, 2019, 15(10):1017-1024. [86] Chappell J, Westbrook A, Verosloff M, et al.Computational design of small transcription activating RNAs for versatile and dynamic gene regulation[J]. Nature Communications, 2017, 8(1):1-12. [87] Baumschlager A, Aoki SK, Khammash M.Dynamic blue light-inducible T7 RNA polymerases(Opto-T7RNAPs)for precise spatiotemporal gene expression control[J]. ACS Synthetic Biology, 2017, 6(11):2157-2167. [88] Tan SZ, Prather KLJ.Dynamic pathway regulation:recent advances and methods of construction[J]. Current Opinion in Chemical Biology, 2017, 41:28-35. [89] Borkowski O, Bricio C, Murgiano M, et al.Cell-free prediction of protein expression costs for growing cells[J]. Nature Communications, 2018, 9(1):1-11. [90] Stephens K, Pozo M, Tsao CY, et al.Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition[J]. Nature Communications, 2019, 10(1):1-11. [91] Honjo H, Iwasaki K, Soma Y, et al.Synthetic microbial consortium with specific roles designated by genetic circuits for cooperative chemical production[J]. Metab Eng, 2019, 55:268-275. [92] He X, Chen Y, Liang Q, et al.Autoinduced AND gate controls metabolic pathway dynamically in response to microbial communities and cell physiological state[J]. ACS Synthetic Biology, 2017, 6(3):463-470. [93] Pai A, Tanouchi Y, Collins CH, et al.Engineering multicellular systems by cell-cell communication[J]. Current Opinion in Biotechnology, 2009, 20(4):461-470. [94] Sedlmayer F, Hell D, Müller M, et al.Designer cells programming quorum-sensing interference with microbes[J]. Nature Communications, 2018, 9(1):1-13. [95] Kobayashi H, Kaern M, Araki M, et al.Programmable cells:interfacing natural and engineered gene networks[J]. PNAS, 2004, 101(22):8414-8419. [96] Saltepe B, Kehribar ES, Su YirmibeŞoğlu SS, et al. Cellular biosensors with engineered genetic circuits[J]. ACS sensors, 2018, 3(1):13-26. |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | CHENG Ya-nan, ZHANG Wen-cong, ZHOU Yuan, SUN Xue, LI Yu, LI Qing-gang. Synthetic Pathway Construction of Producing 2'-fucosyllactose by Lactococcus lactis and Optimization of Fermentation Medium [J]. Biotechnology Bulletin, 2023, 39(9): 84-96. |
[3] | ZHAO Si-jia, WANG Xiao-lu, SUN Ji-lu, TIAN Jian, ZHANG Jie. Modification of Pichia pastoris for Erythritol Production by Metabolic Engineering [J]. Biotechnology Bulletin, 2023, 39(8): 137-147. |
[4] | LI Yu-zhen, MEI Tian-xiu, LI Zhi-wen, WANG Qi, LI Jun, ZOU Yue, ZHAO Xin-qing. Advances in Genomic Studies and Metabolic Engineering of Red Yeasts [J]. Biotechnology Bulletin, 2023, 39(7): 67-79. |
[5] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[6] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[7] | WANG Xiao-mei, YANG Xiao-wei, LI Hui-shang, HE Wei, XIN Zhu-lin. Development Status of Synthetic Biology in Globe and Its Enlightenment [J]. Biotechnology Bulletin, 2023, 39(2): 292-302. |
[8] | LI Ren-han, ZHANG Le-le, LIU Chun-li, LIU Xiu-xia, BAI Zhong-hu, YANG Yan-kun, LI Ye. Development of an L-tryptophan Biosensor Based on the Violacein Biosynthesis Pathway [J]. Biotechnology Bulletin, 2023, 39(10): 80-92. |
[9] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[10] | ZHOU Lin, LIANG Xuan-ming, ZHAO Lei. Biosynthesis of Natural Carotenoids:Progress and Perspective [J]. Biotechnology Bulletin, 2022, 38(7): 119-127. |
[11] | QIU Yi-bin, MA Yan-qin, SHA Yuan-yuan, ZHU Yi-fan, SU Er-zheng, LEI Peng, LI Sha, XU Hong. Research Progress in Molecular Genetic Manipulation Technology of Bacillus amyloliquefaciens and Its Application [J]. Biotechnology Bulletin, 2022, 38(2): 205-217. |
[12] | MA Yan-qin, QIU Yi-bin, LI Sha, XU Hong. Research Progress in the Biosynthesis and Metabolic Engineering of Hyaluronic Acid [J]. Biotechnology Bulletin, 2022, 38(2): 252-262. |
[13] | GUO Xiao-zhen, ZHANG Xue-fu. Analysis of the Development Trend in the Field of Plant Synthetic Biology [J]. Biotechnology Bulletin, 2022, 38(2): 289-296. |
[14] | ZHAO Yu-xue, WANG Yun, YU Lu-yao, LIU Jing-jing, SI Jin-ping, ZHANG Xin-feng, ZHANG Lei. Structure and Application of C-glycosyltransferases in Plants [J]. Biotechnology Bulletin, 2022, 38(10): 18-28. |
[15] | YE Min, GAO Jiao-qi, ZHOU Yong-jin. Engineering Non-conventional Yeast Cell Factory for the Biosynthesis of Natural Products [J]. Biotechnology Bulletin, 2021, 37(8): 12-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||