Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (4): 6-13.
• Review • Previous Articles Next Articles
Jiang Wei, Gu Huiying, Wang Zhimin, Song Ming, Tang Qinglin
Received:
2013-10-08
Online:
2014-04-29
Published:
2014-04-29
Jiang Wei, Gu Huiying, Wang Zhimin, Song Ming, Tang Qinglin. The Flower Development of Arabidopsis thaliana Affected by Floral Meristem Identity Gene AGL24[J]. Biotechnology Bulletin, 2014, 0(4): 6-13.
[1] Koornneef M, Alonso-Blanco C, Peeters AJM, et al. Genetic control of flowering time in Arabidopsis[J]. Ann Rev Plant Physiol, Plant Mol Biol, 1998, 49:345-370. [2] Simpson GG, Dean C. Arabidopsis, the Rosetta stone of flowering time?[J]. Science, 2002, 296:285-289. [3] Mouradov A, Cremer F, Coupland G. Control of flowering time:interacting pathways as a basis for diversity[J]. Plant Cell, 2002, 14:S111-S130. [4] Koornneef M, Alonso-Blanco C, Blankestijn-de Vries H, et al. Genetic interactions among late-flowering mutants of Arabidopsis[J]. Genetics, 1998, 148:885-892. [5] Levy YY, Dean C. The transition to flowering[J]. Plant Cell, 1998, 10:1973-1989. [6] Hartmann U, Ho-hmann S, Nettesheim K, et al. Molecular cloning of SVP:a negative regulator of the floral transition in Arabidopsis[J]. Plant J, 2000, 21:351-360. [7] Yu H, Xu Y, Tan EL, et al. AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals[J]. Proc Natl Acad Sci USA, 2002, 99:16336-16341. [8] Michaels SD, Ditta G, Gustafson-Brown C, et al. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization[J]. Plant J, 2003, 33:867-874. [9] Gregis V, Sessa A, Colombo L, et al. AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis[J]. Plant J, 2008, 56:891-902. [10] Elena RA, Mariana B, Adriana C, et al. Flower development[M]. The Arabidopsis Book, 2010. [11] Masiero S, Li MA, Will I, et al. INCOMPOSITA:a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum[J]. Development, 2004, 131:5981-5990. [12] Liu C, Zhou J, Bracha-Drori K, et al. Specification of Arabidopsis floral meristem identity by repression of floweringtime genes[J]. Development, 2007, 134:1901-1910. [13] Yu H, Ito T, Wellmer F, et al. Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development[J]. Nat Genet, 2004 36:157-161. [14] Gregis V, Sessa A, Colombo L, et al. AGL24, SHORT VEGETAT-IVE PHASE, and APETALA1 redundantly control AGAMOUS dur-ing early stages of flower development in Arabidopsis[J]. Plant Cell, 2006, 18:1373-1382. [15] Ramamoorthy R, Phua EE, Lim S, et al. Identification and characte-rization of RcMADS1, an AGL24 Ortholog from the Holoparasitic Plant Rafflesia cantleyi Solms-Laubach(Rafflesiaceae)[J]. PLOS ONE, DOI:10.1371/journal.done.0067243. [16] Kardailsky I, Shukla VK, Ahn JH, et al. Activation tagging of the floral inducer FT[J]. Science, 1999, 286(5446):1962-1965. [17] Kobayashi Y, Kaya H, Goto K, et al. A pair of related genes with antagonistic roles in mediating flowering signals[J]. Science, 1999, 286(5446):1960-1962. [18] Li D, Liu C, Shen L, et al. A repressor complex governs the integration of flowering signals in Arabidopsis[J]. Dev Cell, 2008, 15:110-120. [19] Lee JH, Yoo SJ, Park SH, et al. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis[J].Genes Dev, 2007, 21(4):397-402. [20] Yoo SK, Chung KS, Kim J, et al. Constans activates suppressor of overexpression of constans 1 through Flowering Locus T to promote flowering in Arabidopsis[J]. Plant Physiol, 2005, 139:770-778. [21] Searle I, He Y, Turck F, et al. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis[J]. Genes Dev, 2006, 20:898-912. [22] Liu C, Chen H, Er HL, et al. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis[J]. Development, 2008, 135:1481-1491. [23] Samach A, Onouchi H, Gold SE, et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis[J]. Science, 2000, 288(5471):1613-1616. [24] Corbesier L, Vincent C, Jang S, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis[J]. Science, 2007, 316:1030-1033. [25] Hepworth SR, Valverde F, Ravenscroft D, et al. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs[J]. EMBO J, 2002, 21:4327-4337. [26] Lee H, Suh SS, Park E, et al. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis[J]. Genes Dev, 2000, 14:2366-2376. [27] Bowman JL, Alvarez J, Weigel D, et al. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes[J]. Development, 1993, 119:721-743. [28] Kempin SA, Savidge B, Yanofsky MF. Molecular basis of the cauliflower phenotype in Arabidopsis[J]. Science, 1995, 267:522-525. [29] Chang L, Zhi WNT, Yang B, et al. A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice[J]. Dev Cell, 2013, 24:612-622. [30] Mandel MA, Gustafson-Brown C, Savidge B, et al. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1[J]. Nature, 1992, 360:273-277. [31] Ratcliffe OJ, Bradley DJ, Coen ES. Separation of shoot and floral identity in Arabidopsis[J]. Development, 1999, 126:1109-1120. [32] Folter S, Immink RG, Kieffer M, et al. Comprehensive interaction map of the Arabidopsis MADS Box transcription factors[J]. Plant Cell, 2005, 17:1424-1433. [33] Wellmer F, Alves-Ferreira M, Dubois A, et al. Genome-wide analysis of gene expression during early Arabidopsis flower development[J]. PLoS Genet, 2006, 2:e117. [34] Kaufmann K, Wellmer F, Muino JM, et al. Orchestration of floral initiation by APETALA1[J]. Science, 2010, 328:85-89. [35] Gregis V, Sessa A, Dorca-Fornell C, et al. The Arabidopsis floral meristem identity genes AP1, AGL2 and SVP directly repress class B and C floral homeotic genes[J]. Plant J, 2009, 60:626-637. [36] Liu C, Xi W, Shen L, et al. Regulation of floral patterning by flowering time genes[J]. Dev Cell, 2009, 5:711-722. [37] Sieburth LE, Meyerowitz EM. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically[J]. Plant Cell, 1997, 9:355-365. [38] Bomblies K, Dagenais N, Weigel D. Redundant enhancers mediate transcriptional repression of AGAMOUS by APETALA2[J]. Dev Biol, 1999, 216:260-264. [39] Deyholos MK, Sieburth LE. Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron[J]. Plant Cell, 2000, 12:1799-1810. [40] Lohmann JU, Hong R, Hobe M, et al. A molecular link between stem cell regulation and floral patterning in Arabidopsis[J]. Cell, 2001, 105:793-803. [41] Bao X, Franks RG, Levin JZ, et al. Repression of AGAMOUS by BELLRINGER in floral and inflorescence meristems[J]. Plant Cell, 2004, 16:1478-1489. [42] Hong RL, Hamaguchi L, Busch MA, et al. Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing[J]. Plant Cell, 2003, 15:1296-1309. [43] Riechmann JL, Meyerowitz EM. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity[J]. Mol Biol Cell, 1997, 8:1243-1259. [44] Cho RJ, Fromont-Racine M, Wodicka L, et al. Parallel analysis of genetic selections using whole genome oligonucleotide arrays[J]. Proc Natl Acad Sci USA, 1998, 95:3752-3757. [45] Immink RG, Tonaco IA, Shchennikova A, et al. SEPALLATA3:the ‘glue’ for MADS box transcription factor complex formation[J]. Genome Biol, 2009, 10:R24. [46] Smaczniak C, Immink RG, Muino JM, et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development[J]. Proc Natl Acad Sci USA, 2012, 109:1560-1565. [47] Ditta G, Pinyopich A, Robles P, et al. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity[J]. Curr Biol, 2004, 14:1935-1940. |
[1] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[2] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[3] | ZHAO Yan-xia, ZHANG Jing-ying, SUN Jun-fei, WANG Jiang-hui, SUN Jia-bo, LV Xiao-hui. Analyses of Transcription and Metabolic Differential in the Flower Development Processes of ‘Rose rugosa cv. Plena’ [J]. Biotechnology Bulletin, 2023, 39(3): 184-195. |
[4] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[5] | GAO Cong, XIAO Chu-jian, LU Shuai, WANG Su-rong, YUAN Hui-hua, CAO Yun-ying. Promoting Effect of Graphene Oxide on the Root Growth of Arabidopsis thaliana [J]. Biotechnology Bulletin, 2022, 38(6): 120-128. |
[6] | XU Hong-yun, ZHANG Ming-yi. AtSCL4,an Arabidopsis thaliana GRAS Transcription Factor,Negatively Modulates Plants in Response to Osmotic Stress [J]. Biotechnology Bulletin, 2022, 38(6): 129-135. |
[7] | YANG Jia-hui, SUN Yu-ping, LU Ya-ning, LIU huan, LU Cun-fu, CHEN Yu-zhen. Abiotic Stress Resistance of Escherichia coli Transformed with Arabidopsis thaliana AtTERT Gene [J]. Biotechnology Bulletin, 2022, 38(2): 1-9. |
[8] | LI Bing-juan, ZHENG Lu, SHEN Ren-fang, LAN Ping. Proteomic Analysis of RPP1A Involved in the Seedling Growth of Arabidopsis thaliana [J]. Biotechnology Bulletin, 2022, 38(2): 10-20. |
[9] | CAO Ying-hui, HU Mei-juan, TONG Yan, ZHANG Yan-ping, ZHAO Kai, PENG Dong-hui, ZHOU Yu-zhen. Identification of the ABC Gene Family and Expression Pattern Analysis During Flower Development in Cymbidium ensifolium [J]. Biotechnology Bulletin, 2022, 38(11): 162-174. |
[10] | XU Zi-han, LIU Qian, MIAO Da-peng, CHEN Yue, HU Feng-rong. Impacts of Cymbidium goeringii’s miR396 Overexpression on the Leaf Growth,Photosynthesis and Chlorophyll Fluorescence in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2021, 37(5): 28-37. |
[11] | YANG Hua-jie, ZHOU Yu-ping, FAN Tian, LV Tian-xiao, XIE Chu-ping, TIAN Chang-en. Screening and Identification of IQM4-Interacting Proteins in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2021, 37(11): 190-196. |
[12] | FANG Dan-dan, ZHANG Ting, WEN Xiao-peng. Overexpression of Pinus massoniana PmPT3 Gene in Arabidopsis thaliana Increasing Low Phosphorus Tolerance [J]. Biotechnology Bulletin, 2021, 37(10): 1-8. |
[13] | SU Jie, GUO Rong-qi, GAO Yang, YU Xiu-min, LI Guo-jing, WANG Rui-gang. Response to NaCl and ABA in Arabidopsis thaliana of the Double Silent Gene VHA-c2&c4 [J]. Biotechnology Bulletin, 2020, 36(7): 48-54. |
[14] | ZHOU Li-ming, FANG Wei. Effects of Plasma Membrane Localization of Arabidopsis thaliana CBL9 on the Growth of Pollen Tube Tip [J]. Biotechnology Bulletin, 2019, 35(5): 58-63. |
[15] | QIANG Xiao-nan, LI Xin, CHEN Jia, LIAO Hong-dong, YU Feng. Preliminary Analysis of Functional Diversity of RALF Peptide Family in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2019, 35(1): 2-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||