[1] Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel [J]. Applied Energy, 2009, 86:2273-2282.
[2] Hahn-H?gerdal B, Galbe M, Gorwa-Grauslund MF, et al. Bio-ethanol-the fuel of tomorrow from the residues of today[J]. Trends in Biotechnology, 2006, 24(12):549-556.
[3] 谢光辉, 郭兴强, 王鑫, 等.能源作物资源现状与发展前景[J].资源科学, 2007, 29(5):74-80.
[4] 吴创之, 周肇秋, 阴秀丽, 等.我国生物质能源发展现状与思考[J].农业机械学报, 2009, 40(1):91-99.
[5] 李碧芳.发展生物质能源对能源安全和粮食安全的影响[J].生态经济, 2010, 3:41-42.
[6] 方炎明, 张聪颖, 虞木奎, 等.栎树繁殖生物技术进展[J].生物技术通报, 2011(4):60-65.
[7] 陈婧, 马履一, 段劼, 等.中国林业生物质能源发展现状[J].林业实用技术, 2012, 11:16-19.
[8] 田玉峰, 李安平, 谢碧霞, 等.橡实淀粉生物乙醇化橡实品种和菌种的筛选[J].食品科学, 2011, 32(7):207-210.
[9] 李安平, 田玉峰, 谢碧霞, 等.橡实淀粉生料酒精发酵与传统酒精发酵的能耗和成分组成比较[J].江西农业大学学报, 2012, 34(5):1032-1038.
[10] Soni PL, Sharma H, Dun D, et al. Physicochemical properties of Quercus leucotrichophora(Oak)starch [J]. Starch/St?rke, 1993, 45(4):127-130.
[11] Stevenson DG, Jane JL, Inglett GE. Physicochemical properties of pin oak(Quercus palustris Muenchh.)acorn starch [J]. Starch/St?rke, 2006, 58(11):553-560.
[12] Derory J, Léger P, Garcia V, et al. Transcriptome analysis of bud burst in sessile oak(Quercus petraea)[J]. New Phytologist, 2006, 170(4):723-738.
[13] Lesur I, Durand J, Sebastiani F, et al. A sample view of the pedunculate oak(Quercus robur)genome from the sequencing of hypomethylated and random genomic libraries [J]. Tree Genetics & Genomes, 2011, 7(6):1277-1285.
[14] Ueno S, Le Provost G, Léger V, et al. Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species:oak [J]. BMC Genomics, 2010, 11:650.
[15] 刘红亮, 郑丽明, 刘青青, 等.非模式生物转录组研究[J].遗传, 2013, 35(8):955-970.
[16] 罗伟祥, 郝怀晓, 薛安平.橡树资源-优质林木生物质能源发展战略研究[J].生物质化学工程, 2006, 40(B12):147-152.
[17] Huang LL, Yang X, Sun P, et al. The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers [J]. PloS One, 2012, 7(6):e38653.
[18] Haas BJ, Papanicolaou A, Yassour M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis [J]. Nature Protocols, 2013, 8(8):1494-1512.
[19] Wang R, Xu S, et al. De novo sequence assembly and characteriza-tion of Lycoris aurea transcriptome using GS FLX Titanium platform of 454 pyrosequencing [J]. PloS One, 2013, 8(4):e60449.
[20] Tao X, Fang Y, Xiao Y, et al. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed(Landoltia punctata)under nutrient starvation [J]. Biotechnology for Biofuels, 2013, 6(1):72.
[21] Kaminski KP, Petersen AH, S?nderk?r M, et al. Transcriptome analysis suggests that starch synthesis may proceed via multiple metabolic routes in high yielding potato cultivars [J]. PloS One, 2012, 7(12):e51248.
[22] Shu S, Chen B, et al. De novo sequencing and transcriptome analysis of Wolfiporia cocos to reveal genes related to biosynthesis of triterpenoids [J]. PloS One, 2013, 8(8):e71350.
[23] Zhou Y, Gao F, Liu R, et al. De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus [J]. BMC Genomics, 2012, 13:266.
[24] Kole, Chittaranjan. Fagaceae Trees. //In genome mapping and molecular breeding in plants[M] . Springer, 2007, 7:161-184.
[25] Li SW, Yang H, Liu YF, et al. Transcriptome and gene expression analysis of the rice leaf folder, Cnaphalocrosis medinalis [J]. PloS One, 2012, 7(11):e47401.
[26] O’Malley DM, McKeand SE. Marker assisted selection for breeding value in forest trees [J]. Forest Genetics, 1994, 1:207-218.
[27] Neale DB, Kremer A. Forest tree genomics:growing resources and applications [J]. Nature Reviews Genetics, 2011, 12:111-122. |