Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (1): 175-186.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0478
Previous Articles Next Articles
LUO Hao-tian(), WANG Long, WANG Yu-qian, WANG Yue, LI Jia-zhen, YANG Meng-ke, ZHANG Jie, DENG Xin, WANG Hong-yan()
Received:
2022-04-17
Online:
2023-01-26
Published:
2023-02-02
Contact:
WANG Hong-yan
E-mail:792120447@qq.com;hongyan2003@126.com
LUO Hao-tian, WANG Long, WANG Yu-qian, WANG Yue, LI Jia-zhen, YANG Meng-ke, ZHANG Jie, DENG Xin, WANG Hong-yan. Genome-wide Identification and Expression Analysis of the RNAi-related Gene Families in Setaria viridis[J]. Biotechnology Bulletin, 2023, 39(1): 175-186.
S. viridis phytozome gene ID | S. viridis gene name | S. viridis phytozome sequence length/aa | S. italica phytozome gene ID(var. Yugu1) | S. italica gene name | S. italica phytozome sequence length/aa | Identity/% |
---|---|---|---|---|---|---|
Sevir.9G565900.2 | SvDCL1a | 1 933 | Seita.9G562200.1 | SiDCL1a | 1 933 | 99 |
Sevir.4G119200.1 | SvDCL1b | 313 | Seita.4G153000.1 | SiDCL1b | 313 | 100 |
Sevir.3G331300.1 | SvDCL1c | 375 | Seita.3G295600.1 | SiDCL1c | 375 | 99 |
Sevir.9G177900.1 | SvDCL2 | 1 562 | Seita.9G179200.1 | SiDCL2 | 1 404 | 99 |
Sevir.5G427800.1 | SvDCL3a | 1 662 | Seita.5G422300.1 | SiDCL3a | 1 662 | 99 |
Sevir.9G214200.2 | SvDCL3b | 1 493 | Seita.9G215300.1 | SiDCL3b | 1 626 | 95 |
Sevir.7G171000.1 | SvSHO1 | 1 632 | Seita.7G162200.1 | SiSHO1 | 1 632 | 99 |
Sevir.7G213000.1 | SvAGO1b | 1 146 | Seita.7G201100.1 | SiAGO1b | 1 104 | 99 |
Sevir.1G385400.1 | SvAGO1c | 1 023 | Seita.1G378700.1 | SiAGO1c | 1 023 | 99 |
Sevir.4G301000.1 | SvAGO1d | 1 050 | Seita.4G288700.1 | SiAGO1d | 1 050 | 99 |
Sevir.7G248200.1 | SvAGO2 | 1 024 | Seita.7G236800.1 | SiAGO2 | 1 024 | 99 |
Sevir.5G040900.1 | SvAGO4a | 902 | Seita.5G043300.1 | SiAGO4a | 902 | 99 |
Sevir.3G120100.1 | SvAGO4b | 910 | Seita.3G117800.1 | SiAGO4b | 910 | 99 |
Sevir.9G051150.1 | SvMEL1 | 1 005 | Seita.9G052000.1 | SiMEL1 | 1 005 | 99 |
Sevir.9G137300.2 | SvAGO12 | 765 | Seita.9G138800.1 | SiAGO12 | 1 088 | 99 |
Sevir.2G069400.2 | SvAGO14 | 764 | Seita.2G066500.1 | SiAGO14 | 1 041 | 100 |
Sevir.2G154500.1 | SvAGO16 | 886 | Seita.2G148000.1 | SiAGO16 | 910 | 100 |
Sevir.2G321900.2 | SvAGO18 | 779 | Seita.2G310800.1 | SiAGO18 | 954 | 99 |
Sevir.9G365300.2 | SvSHL4 | 881 | Seita.9G359200.1 | SiSHL4 | 1 030 | 99 |
Sevir.4G237200.2 | SvPNH1 | 965 | Seita.4G225900.3 | SiPNH1 | 965 | 100 |
Sevir.1G318100.1 | SvRDR1 | 1 120 | Seita.1G312200.1 | SiRDR1 | 1 123 | 99 |
Sevir.7G137100.1 | SvRDR2 | 1 130 | Seita.7G128700.1 | SiRDR2 | 1 130 | 100 |
Sevir.7G003600.2 | SvRDR3 | 616 | Seita.7G020600.1 | SiRDR3 | 1 150 | 99 |
Sevir.5G186200.1 | SvSHL2 | 1 211 | Seita.5G184800.1 | SiSHL2 | 1 211 | 99 |
Table 1 Gene sequence information of S. viridis and S. italica
S. viridis phytozome gene ID | S. viridis gene name | S. viridis phytozome sequence length/aa | S. italica phytozome gene ID(var. Yugu1) | S. italica gene name | S. italica phytozome sequence length/aa | Identity/% |
---|---|---|---|---|---|---|
Sevir.9G565900.2 | SvDCL1a | 1 933 | Seita.9G562200.1 | SiDCL1a | 1 933 | 99 |
Sevir.4G119200.1 | SvDCL1b | 313 | Seita.4G153000.1 | SiDCL1b | 313 | 100 |
Sevir.3G331300.1 | SvDCL1c | 375 | Seita.3G295600.1 | SiDCL1c | 375 | 99 |
Sevir.9G177900.1 | SvDCL2 | 1 562 | Seita.9G179200.1 | SiDCL2 | 1 404 | 99 |
Sevir.5G427800.1 | SvDCL3a | 1 662 | Seita.5G422300.1 | SiDCL3a | 1 662 | 99 |
Sevir.9G214200.2 | SvDCL3b | 1 493 | Seita.9G215300.1 | SiDCL3b | 1 626 | 95 |
Sevir.7G171000.1 | SvSHO1 | 1 632 | Seita.7G162200.1 | SiSHO1 | 1 632 | 99 |
Sevir.7G213000.1 | SvAGO1b | 1 146 | Seita.7G201100.1 | SiAGO1b | 1 104 | 99 |
Sevir.1G385400.1 | SvAGO1c | 1 023 | Seita.1G378700.1 | SiAGO1c | 1 023 | 99 |
Sevir.4G301000.1 | SvAGO1d | 1 050 | Seita.4G288700.1 | SiAGO1d | 1 050 | 99 |
Sevir.7G248200.1 | SvAGO2 | 1 024 | Seita.7G236800.1 | SiAGO2 | 1 024 | 99 |
Sevir.5G040900.1 | SvAGO4a | 902 | Seita.5G043300.1 | SiAGO4a | 902 | 99 |
Sevir.3G120100.1 | SvAGO4b | 910 | Seita.3G117800.1 | SiAGO4b | 910 | 99 |
Sevir.9G051150.1 | SvMEL1 | 1 005 | Seita.9G052000.1 | SiMEL1 | 1 005 | 99 |
Sevir.9G137300.2 | SvAGO12 | 765 | Seita.9G138800.1 | SiAGO12 | 1 088 | 99 |
Sevir.2G069400.2 | SvAGO14 | 764 | Seita.2G066500.1 | SiAGO14 | 1 041 | 100 |
Sevir.2G154500.1 | SvAGO16 | 886 | Seita.2G148000.1 | SiAGO16 | 910 | 100 |
Sevir.2G321900.2 | SvAGO18 | 779 | Seita.2G310800.1 | SiAGO18 | 954 | 99 |
Sevir.9G365300.2 | SvSHL4 | 881 | Seita.9G359200.1 | SiSHL4 | 1 030 | 99 |
Sevir.4G237200.2 | SvPNH1 | 965 | Seita.4G225900.3 | SiPNH1 | 965 | 100 |
Sevir.1G318100.1 | SvRDR1 | 1 120 | Seita.1G312200.1 | SiRDR1 | 1 123 | 99 |
Sevir.7G137100.1 | SvRDR2 | 1 130 | Seita.7G128700.1 | SiRDR2 | 1 130 | 100 |
Sevir.7G003600.2 | SvRDR3 | 616 | Seita.7G020600.1 | SiRDR3 | 1 150 | 99 |
Sevir.5G186200.1 | SvSHL2 | 1 211 | Seita.5G184800.1 | SiSHL2 | 1 211 | 99 |
Name | Number of amino acids | Molecular weig Mw/Da | Theore- tical pI | Number of nega- tive amino acids | Number of posi- tive amino acids | Instability index | Aliphatic index | Grand average of hydropathicity | Subcellular localization |
---|---|---|---|---|---|---|---|---|---|
SvDCL1a | 1 933 | 216 220.21 | 6.38 | 258 | 241 | 44.68 | 82.32 | -0.401 | Nucleus |
SvDCL1b | 313 | 35 044.76 | 5.01 | 52 | 36 | 38.74 | 82.88 | -0.396 | Nucleus |
SvDCL1c | 375 | 41 215.67 | 8.91 | 43 | 49 | 29.3 | 92.85 | -0.186 | Nucleus |
SvDCL2 | 1 562 | 174 660.19 | 8.16 | 171 | 179 | 48.64 | 92.11 | -0.169 | Nucleus |
SvDCL3a | 1 662 | 185 841.70 | 6.01 | 213 | 187 | 44.64 | 91.94 | -0.243 | Nucleus |
SvDCL3b | 1 493 | 168 634.83 | 6 | 183 | 158 | 45.1 | 95.37 | -0.142 | Extracellular space |
SvSHO1 | 1 632 | 184 872.59 | 6.33 | 210 | 194 | 44.42 | 90.29 | -0.229 | Nucleus |
SvAGO1b | 1 146 | 127 072.12 | 9.41 | 102 | 135 | 49.38 | 74.15 | -0.475 | Extracellular space |
SvAGO1c | 1 023 | 113 773.50 | 9.55 | 101 | 136 | 52.31 | 77.34 | -0.5 | Nucleus |
SvAGO1d | 1 050 | 116 775.50 | 9.24 | 105 | 130 | 50.52 | 74.78 | -0.464 | Nucleus |
SvAGO2 | 1 024 | 110 757.88 | 9.31 | 98 | 129 | 38.85 | 75.78 | -0.419 | Nucleus |
SvAGO4a | 902 | 100 987.60 | 9.15 | 99 | 121 | 48.49 | 78.65 | -0.429 | Nucleus |
SvAGO4b | 910 | 101 572.16 | 9.02 | 99 | 117 | 48.16 | 79.03 | -0.398 | Nucleus |
SvMEL1 | 1 005 | 111 633.67 | 9.18 | 104 | 128 | 50.36 | 79.68 | -0.364 | Chloroplast thylakoid lumen |
SvAGO12 | 765 | 85 951.54 | 9.02 | 76 | 95 | 41.32 | 84.09 | -0.336 | Nucleus |
SvAGO14 | 764 | 86 241.92 | 8.9 | 74 | 89 | 49.64 | 81.77 | -0.293 | Nucleus |
SvAGO16 | 886 | 99 036.16 | 9.26 | 92 | 118 | 42.69 | 86.86 | -0.296 | Nucleus |
SvAGO18 | 779 | 87 496.55 | 9.19 | 86 | 109 | 40.43 | 89.33 | -0.338 | Nucleus |
SvSHL4 | 881 | 99 741.90 | 9.24 | 92 | 120 | 40.43 | 83.63 | -0.366 | Nucleus |
SvPNH1 | 965 | 107 674.01 | 9.34 | 94 | 127 | 48.09 | 83.07 | -0.356 | Nucleus |
SvRDR1 | 1 120 | 127 951.65 | 7.72 | 131 | 133 | 39.69 | 86.88 | -0.247 | Nucleus |
SvRDR2 | 1 130 | 126 334.56 | 6.9 | 146 | 143 | 43.53 | 85.42 | -0.223 | Chloroplast thylakoid membrane |
SvRDR3 | 616 | 69 258.84 | 6.54 | 77 | 73 | 52.21 | 77.4 | -0.428 | Nucleus |
SvSHL2 | 1 211 | 136 712.9 | 6.48 | 156 | 149 | 41.81 | 79.41 | -0.334 | Nucleus |
Table 2 Protein sequence information of S. viridis
Name | Number of amino acids | Molecular weig Mw/Da | Theore- tical pI | Number of nega- tive amino acids | Number of posi- tive amino acids | Instability index | Aliphatic index | Grand average of hydropathicity | Subcellular localization |
---|---|---|---|---|---|---|---|---|---|
SvDCL1a | 1 933 | 216 220.21 | 6.38 | 258 | 241 | 44.68 | 82.32 | -0.401 | Nucleus |
SvDCL1b | 313 | 35 044.76 | 5.01 | 52 | 36 | 38.74 | 82.88 | -0.396 | Nucleus |
SvDCL1c | 375 | 41 215.67 | 8.91 | 43 | 49 | 29.3 | 92.85 | -0.186 | Nucleus |
SvDCL2 | 1 562 | 174 660.19 | 8.16 | 171 | 179 | 48.64 | 92.11 | -0.169 | Nucleus |
SvDCL3a | 1 662 | 185 841.70 | 6.01 | 213 | 187 | 44.64 | 91.94 | -0.243 | Nucleus |
SvDCL3b | 1 493 | 168 634.83 | 6 | 183 | 158 | 45.1 | 95.37 | -0.142 | Extracellular space |
SvSHO1 | 1 632 | 184 872.59 | 6.33 | 210 | 194 | 44.42 | 90.29 | -0.229 | Nucleus |
SvAGO1b | 1 146 | 127 072.12 | 9.41 | 102 | 135 | 49.38 | 74.15 | -0.475 | Extracellular space |
SvAGO1c | 1 023 | 113 773.50 | 9.55 | 101 | 136 | 52.31 | 77.34 | -0.5 | Nucleus |
SvAGO1d | 1 050 | 116 775.50 | 9.24 | 105 | 130 | 50.52 | 74.78 | -0.464 | Nucleus |
SvAGO2 | 1 024 | 110 757.88 | 9.31 | 98 | 129 | 38.85 | 75.78 | -0.419 | Nucleus |
SvAGO4a | 902 | 100 987.60 | 9.15 | 99 | 121 | 48.49 | 78.65 | -0.429 | Nucleus |
SvAGO4b | 910 | 101 572.16 | 9.02 | 99 | 117 | 48.16 | 79.03 | -0.398 | Nucleus |
SvMEL1 | 1 005 | 111 633.67 | 9.18 | 104 | 128 | 50.36 | 79.68 | -0.364 | Chloroplast thylakoid lumen |
SvAGO12 | 765 | 85 951.54 | 9.02 | 76 | 95 | 41.32 | 84.09 | -0.336 | Nucleus |
SvAGO14 | 764 | 86 241.92 | 8.9 | 74 | 89 | 49.64 | 81.77 | -0.293 | Nucleus |
SvAGO16 | 886 | 99 036.16 | 9.26 | 92 | 118 | 42.69 | 86.86 | -0.296 | Nucleus |
SvAGO18 | 779 | 87 496.55 | 9.19 | 86 | 109 | 40.43 | 89.33 | -0.338 | Nucleus |
SvSHL4 | 881 | 99 741.90 | 9.24 | 92 | 120 | 40.43 | 83.63 | -0.366 | Nucleus |
SvPNH1 | 965 | 107 674.01 | 9.34 | 94 | 127 | 48.09 | 83.07 | -0.356 | Nucleus |
SvRDR1 | 1 120 | 127 951.65 | 7.72 | 131 | 133 | 39.69 | 86.88 | -0.247 | Nucleus |
SvRDR2 | 1 130 | 126 334.56 | 6.9 | 146 | 143 | 43.53 | 85.42 | -0.223 | Chloroplast thylakoid membrane |
SvRDR3 | 616 | 69 258.84 | 6.54 | 77 | 73 | 52.21 | 77.4 | -0.428 | Nucleus |
SvSHL2 | 1 211 | 136 712.9 | 6.48 | 156 | 149 | 41.81 | 79.41 | -0.334 | Nucleus |
S. viridis Seq | S. italica Seq | Ka | Ks | Ka/Ks |
---|---|---|---|---|
SvDCL1a | SiDCL1a | 4.50E-04 | 0.007448 | 0.060448 |
SvDCL2 | SiDCL2 | 0.007684 | 0.016635 | 0.461898 |
SvDCL3a | SiDCL3a | 0.001735 | 0.002233 | 0.776912 |
SvDCL3b | SiDCL3b | 0.003205 | 0.008756 | 0.36609 |
SvSHO1 | SiSHO1 | 0.001317 | 0.003678 | 0.358024 |
SvDCL1c | SiDCL1c | 0.001188 | 0.003628 | 0.327395 |
SvDCL1b | SiDCL1b | 0 | 0 | 1 |
SvAGO1b | SiAGO1b | 0.003265 | 0.002469 | 1.32227 |
SvAGO1c | SiAGO1c | 4.32E-04 | 0.004014 | 0.1077 |
SvAGO1d | SiAGO1d | 0.002126 | 0.009241 | 0.230094 |
SvAGO2 | SiAGO2 | 0.002176 | 0.005251 | 0.414369 |
SvAGO4a | SiAGO4a | 0.001443 | 0.014678 | 0.098316 |
SvAGO4b | SiAGO4b | 0.004078 | 0.008723 | 0.467525 |
SvMEL1 | SiMEL1 | 0.001322 | 0.008187 | 0.161428 |
SvAGO14 | SiAGO14 | 0 | 0.003712 | 0 |
SvAGO16 | SiAGO16 | 0 | 0 | 1 |
SvAGO18 | SiAGO18 | 0.002238 | 0.007426 | 0.301434 |
SvSHL4 | SiSHL4 | 4.25E-04 | 0.004131 | 0.102776 |
SvPNH1 | SiPNH1 | 0 | 0 | 1 |
SvAGO12 | SiAGO12 | 0.001719 | 0.013044 | 0.131752 |
SvSHL2 | SiSHL2 | 3.62E-04 | 0.001162 | 0.311114 |
SvRDR2 | SiRDR2 | 0 | 0.001233 | 0 |
SvRDR1 | SiRDR1 | 0.003106 | 0.005191 | 0.598413 |
SvRDR3 | SiRDR3 | 0.021549 | 0.035874 | 0.600701 |
Table 3 Ka/Ks of S. viridis and S. italica
S. viridis Seq | S. italica Seq | Ka | Ks | Ka/Ks |
---|---|---|---|---|
SvDCL1a | SiDCL1a | 4.50E-04 | 0.007448 | 0.060448 |
SvDCL2 | SiDCL2 | 0.007684 | 0.016635 | 0.461898 |
SvDCL3a | SiDCL3a | 0.001735 | 0.002233 | 0.776912 |
SvDCL3b | SiDCL3b | 0.003205 | 0.008756 | 0.36609 |
SvSHO1 | SiSHO1 | 0.001317 | 0.003678 | 0.358024 |
SvDCL1c | SiDCL1c | 0.001188 | 0.003628 | 0.327395 |
SvDCL1b | SiDCL1b | 0 | 0 | 1 |
SvAGO1b | SiAGO1b | 0.003265 | 0.002469 | 1.32227 |
SvAGO1c | SiAGO1c | 4.32E-04 | 0.004014 | 0.1077 |
SvAGO1d | SiAGO1d | 0.002126 | 0.009241 | 0.230094 |
SvAGO2 | SiAGO2 | 0.002176 | 0.005251 | 0.414369 |
SvAGO4a | SiAGO4a | 0.001443 | 0.014678 | 0.098316 |
SvAGO4b | SiAGO4b | 0.004078 | 0.008723 | 0.467525 |
SvMEL1 | SiMEL1 | 0.001322 | 0.008187 | 0.161428 |
SvAGO14 | SiAGO14 | 0 | 0.003712 | 0 |
SvAGO16 | SiAGO16 | 0 | 0 | 1 |
SvAGO18 | SiAGO18 | 0.002238 | 0.007426 | 0.301434 |
SvSHL4 | SiSHL4 | 4.25E-04 | 0.004131 | 0.102776 |
SvPNH1 | SiPNH1 | 0 | 0 | 1 |
SvAGO12 | SiAGO12 | 0.001719 | 0.013044 | 0.131752 |
SvSHL2 | SiSHL2 | 3.62E-04 | 0.001162 | 0.311114 |
SvRDR2 | SiRDR2 | 0 | 0.001233 | 0 |
SvRDR1 | SiRDR1 | 0.003106 | 0.005191 | 0.598413 |
SvRDR3 | SiRDR3 | 0.021549 | 0.035874 | 0.600701 |
[1] |
Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity[J]. Nat Rev Genet, 2014, 15(6): 394-408.
doi: 10.1038/nrg3683 pmid: 24805120 |
[2] |
Cuerda-Gil D, Slotkin RK. Non-canonical RNA-directed DNA methylation[J]. Nat Plants, 2016, 2(11): 16163.
doi: 10.1038/nplants.2016.163 pmid: 27808230 |
[3] |
Fang XF, Qi YJ. RNAi in plants: an argonaute-centered view[J]. Plant Cell, 2016, 28(2): 272-285.
doi: 10.1105/tpc.15.00920 URL |
[4] |
Haag JR, Pikaard CS. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing[J]. Nat Rev Mol Cell Biol, 2011, 12(8): 483-492.
doi: 10.1038/nrm3152 URL |
[5] |
Matzke MA, Kanno T, Matzke AJM. RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants[J]. Annu Rev Plant Biol, 2015, 66: 243-267.
doi: 10.1146/annurev-arplant-043014-114633 pmid: 25494460 |
[6] |
Yang ZR, Huang Y, Yang JL, et al. Jasmonate signaling enhances RNA silencing and antiviral defense in rice[J]. Cell Host Microbe, 2020, 28(1): 89-103.e8.
doi: S1931-3128(20)30252-3 pmid: 32504578 |
[7] |
Bologna NG, Voinnet O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis[J]. Annu Rev Plant Biol, 2014, 65: 473-503.
doi: 10.1146/annurev-arplant-050213-035728 URL |
[8] |
Henderson IR, Zhang XY, Lu C, et al. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning[J]. Nat Genet, 2006, 38(6): 721-725.
doi: 10.1038/ng1804 pmid: 16699516 |
[9] |
Wang JL, Mei J, Ren GD. Plant microRNAs: biogenesis, homeostasis, and degradation[J]. Front Plant Sci, 2019, 10: 360.
doi: 10.3389/fpls.2019.00360 pmid: 30972093 |
[10] |
Wendte JM, Pikaard CS. The RNAs of RNA-directed DNA methylation[J]. Biochim Biophys Acta Gene Regul Mech, 2017, 1860(1): 140-148.
doi: 10.1016/j.bbagrm.2016.08.004 URL |
[11] |
Stroud H, Greenberg MVC, Feng SH, et al. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome[J]. Cell, 2013, 152(1/2): 352-364.
doi: 10.1016/j.cell.2012.10.054 URL |
[12] |
Blevins T, Podicheti R, Mishra V, et al. Identification of pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis[J]. eLife, 2015, 4: e09591.
doi: 10.7554/eLife.09591 URL |
[13] |
Marí-Ordóñez A, Marchais A, Etcheverry M, et al. Reconstructing de novo silencing of an active plant retrotransposon[J]. Nat Genet, 2013, 45(9): 1029-1039.
doi: 10.1038/ng.2703 pmid: 23852169 |
[14] |
Kapoor M, Arora R, Lama T, et al. Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice[J]. BMC Genomics, 2008, 9: 451.
doi: 10.1186/1471-2164-9-451 pmid: 18826656 |
[15] | 张司雯, 邓欣, 王龙, 等. 谷子RNA干扰相关酶类基因家族的鉴定与分析[J]. 草业科学, 2021, 38(7): 1380-1392. |
Zhang SW, Deng X, Wang L, et al. Identification and analysis of RNA interference-related enzyme gene families in Setaria italica[J]. Pratacultural Sci, 2021, 38(7): 1380-1392. | |
[16] |
Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes[J]. Science, 2000, 290(5494): 1151-1155.
doi: 10.1126/science.290.5494.1151 pmid: 11073452 |
[17] | Diao XM, Jia GQ. Origin and domestication of foxtail millet[M]. In:Genetics and Genomics of Setaria. Springer Cham, 2017. |
[18] |
Mamidi S, Healey A, Huang P, et al. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci[J]. Nat Biotechnol, 2020, 38(10): 1203-1210.
doi: 10.1038/s41587-020-0681-2 pmid: 33020633 |
[19] |
Chen CJ, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8): 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[20] |
Bennetzen JL, Schmutz J, Wang H, et al. Reference genome sequence of the model plant Setaria[J]. Nat Biotechnol, 2012, 30(6): 555-561.
doi: 10.1038/nbt.2196 pmid: 22580951 |
[21] |
Diamond J. Evolution, consequences and future of plant and animal domestication[J]. Nature, 2002, 418(6898): 700-707.
doi: 10.1038/nature01019 URL |
[22] |
Huang XH, Kurata N, Wei XH, et al. A map of rice genome variation reveals the origin of cultivated rice[J]. Nature, 2012, 490(7421): 497-501.
doi: 10.1038/nature11532 URL |
[23] | Wendel JF, Grover CE. Taxonomy and evolution of the cotton genus, gossypium[M], Cotton, 2015: 25-44. |
[24] |
Matsuoka Y, Vigouroux Y, Goodman MM, et al. A single domestication for maize shown by multilocus microsatellite genotyping[J]. Proc Natl Acad Sci USA, 2002, 99(9): 6080-6084.
doi: 10.1073/pnas.052125199 pmid: 11983901 |
[25] |
Kim MY, Van K, Kang YJ, et al. Tracing soybean domestication history: from nucleotide to genome[J]. Breed Sci, 2012, 61(5): 445-452.
doi: 10.1270/jsbbs.61.445 URL |
[26] |
Zhang L, Su WQ, Tao R, et al. RNA sequencing provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis[J]. Nat Commun, 2017, 8(1): 2264.
doi: 10.1038/s41467-017-02445-9 pmid: 29273740 |
[27] |
Chan SWL, Zilberman D, Xie ZX, et al. RNA silencing genes control de novo DNA methylation[J]. Science, 2004, 303(5662): 1336.
doi: 10.1126/science.1095989 pmid: 14988555 |
[28] |
McCue AD, Panda K, Nuthikattu S, et al. ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation[J]. EMBO J, 2015, 34(1): 20-35.
doi: 10.15252/embj.201489499 pmid: 25388951 |
[29] |
Raja P, Jackel JN, Li SZ, et al. Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against geminiviruses[J]. J Virol, 2014, 88(5): 2611-2622.
doi: 10.1128/JVI.02305-13 URL |
[30] |
Huang J, Yang ML, Zhang XM. The function of small RNAs in plant biotic stress response[J]. J Integr Plant Biol, 2016, 58(4): 312-327.
doi: 10.1111/jipb.12463 |
[31] |
Guo XW, Ma ZY, Zhang ZH, et al. Small RNA-sequencing links physiological changes and RdDM process to vegetative-to-floral transition in apple[J]. Front Plant Sci, 2017, 8: 873.
doi: 10.3389/fpls.2017.00873 pmid: 28611800 |
[32] |
Cheng JF, Niu QF, Zhang B, et al. Downregulation of RdDM during strawberry fruit ripening[J]. Genome Biol, 2018, 19(1): 212.
doi: 10.1186/s13059-018-1587-x pmid: 30514401 |
[33] |
Iwasaki M, Hyvärinen L, Piskurewicz U, et al. Non-canonical RNA-directed DNA methylation participates in maternal and environmental control of seed dormancy[J]. eLife, 2019, 8: e37434.
doi: 10.7554/eLife.37434 URL |
[1] | LIN Hong-yan, GUO Xiao-rui, LIU Di, LI Hui, LU Hai. Molecular Mechanism of Transcriptional Factor AtbHLH68 in Regulating Cell Wall Development by Transcriptome Analysis [J]. Biotechnology Bulletin, 2023, 39(9): 105-116. |
[2] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[3] | FU Yu, JIA Rui-rui, HE He, WANG Liang-gui, YANG Xiu-lian. Growth Differences Among Grafted Seedlings with Two Rootstocks of Catalpa bungei and Comparative Analysis of Transcriptome [J]. Biotechnology Bulletin, 2023, 39(8): 251-261. |
[4] | KONG De-zhen, DUAN Zhen-yu, WANG Gang, ZHANG Xin, XI Lin-qiao. Physiological Characteristics and Transcriptome Analysis of Sorghum bicolor × S. Sudanense Seedlings Under Salt-alkali Stress [J]. Biotechnology Bulletin, 2023, 39(6): 199-207. |
[5] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[6] | XIE Yang, XING Yu-meng, ZHOU Guo-yan, LIU Mei-yan, YIN Shan-shan, YAN Li-ying. Transcriptome Analysis of Diploid and Autotetraploid in Cucumber Fruit [J]. Biotechnology Bulletin, 2023, 39(3): 152-162. |
[7] | HU Li-li, LIN Bo-rong, WANG Hong-hong, CHEN Jian-song, LIAO Jin-ling, ZHUO Kan. Transcriptome and Candidate Effectors Analysis of Pratylenchus brachyurus [J]. Biotechnology Bulletin, 2023, 39(3): 254-266. |
[8] | SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(11): 226-237. |
[9] | XU Jun, YE Yu-qing, NIU Ya-jing, HUANG He, ZHANG Meng-meng. Transcriptome Analysis of Rhizome Development in Chrysanthemum× × morifolium [J]. Biotechnology Bulletin, 2023, 39(10): 231-245. |
[10] | ZHOU Jia-yan, ZOU Jian, CHEN Wei-ying, WU Yi-chao, CHEN Xi-tong, WANG Qian, ZENG Wen-jing, HU Nan, YANG Jun. Construction of Multi-gene Interference System for Plant and Analysis of Its Application Efficiency [J]. Biotechnology Bulletin, 2023, 39(1): 115-126. |
[11] | WANG Hui, MA Yi-wen, QIAO Zheng-hao, CHANG Yan-cai, ZHU Kun, DING Hai-ping, NIE Yong-xin, PAN Guang-tang. Structural and Functional Characterization of AOX Gene Family [J]. Biotechnology Bulletin, 2022, 38(7): 160-170. |
[12] | XIN Jian-pan, LI Yan, ZHAO Chu, TIAN Ru-nan. Transcriptome Sequencing in the Leaves of Pontederia cordata with Cadmium Exposure and Gene Mining in Phenypropanoid Pathways [J]. Biotechnology Bulletin, 2022, 38(6): 198-210. |
[13] | XU Jin, LI Tao, LI Chu-lin, ZHU Shun-ni, WANG Zhong-ming, XIANG Wen-zhou. Effects of Temperature on the Growth,Total Lipid and Eicosapentaenoic Acid Synthesis of Eustigmatos sp. [J]. Biotechnology Bulletin, 2022, 38(6): 261-271. |
[14] | XIONG He-li, SHA Qian, LIU Shao-na, XIANG De-cai, ZHANG Bin, ZHAO Zhi-yong. Application of Single-cell Transcriptome Sequencing in Animals [J]. Biotechnology Bulletin, 2022, 38(3): 226-233. |
[15] | ZHANG Bin, YANG Xin-xia. Identification of Key Transcription Factors in Response to Salt Stress in Rice [J]. Biotechnology Bulletin, 2022, 38(3): 9-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||