Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (7): 8-15.
• Review and editorial • Previous Articles Next Articles
Zhao Xiayun, Xian Dengyu, Song Ming, Tang Qinglin
Received:
2013-12-05
Online:
2014-07-15
Published:
2014-07-16
Zhao Xiayun, Xian Dengyu, Song Ming, Tang Qinglin. Research Progress of MIKC-type MADS-box Protein Regulation on Flowering[J]. Biotechnology Bulletin, 2014, 0(7): 8-15.
[1] 李宪利, 袁志友, 高东升.高等植物成花分子机理研究现状及展望[J]. 西北植物学报, 2002, 22(1):173-183.
[2] 胡瑞波, 范成明, 林辰涛, 等. 大豆MIKC型MADS-box基因家族分析[J]. 分子植物育种, 2009, 7(3):429-436. [3] Smaczniak C, Immink RGH, Angenent GC, et al. Developmental and evolutionary diversity of plant MADS domain factors:insights from recent studies [J]. Development, 2012, 139(17):3081-3098. [4] Messenguy F, Dubois E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development [J]. Gene, 2003, 316:1-21. [5] Theiβen G, Kim JT, Saedler H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes [J]. Mol Evol, 1996, 43(5):484-516. [6] Alvarez-Buylla ER, Pelaz S, Liljegren SJ, et al. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals [J]. Proc Natl Acad Sci USA, 2000, 97(10):5328-5333. [7] De Bodt S, Raes J, Van de Peer, et al. And then there were many:MADS goes genomic [J]. Trends Plant Sci, 2003, 8(10):475-483. [8] Becker A, Theiβen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants [J]. Mol Phylogenet Evol, 2003, 29(3):464-489. [9] Gramzow L, Theissen G. A hitchhiker’s guide to the MADS world of plants [J]. Genome Biol, 2010, 11(6):214-225. [10] Kwantes M, Liebsch D, Verelst W. How MIKC* MADS-box genes originated and evidence for their conserved function throughout the evolution of vascular plant gametophytes [J]. Mol Biol Evol, 2012, 29(1):293-302. [11] Becker A, Theiβen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants [J]. Mol Phylogenet Evol, 2003, 29(3):464-489. [12] Adamczyk BJ, Fernandez DE. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis [J]. Plant Physiol, 2009, 149(4):1713-1723. [13] Liu Y, Cui SJ, Wu F, et al. Functional conservation of MIKC*-type MADS box Genes in Arabidopsis and rice pollen [J]. Plant Cell, 2013, 25:1288-1303. [14] 汤青林, 李念祖, 宋明, 等. 芥菜开花调控因子SVP与FLC蛋白互作的结构域筛选与鉴定[J]. 园艺学报, 2012, 39(12):2395-2403. [15] Yang Y, Fanning L, Jack T. The K domain mediates eterodimeriza-tion of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA [J]. The Plant Journal, 2003, 33(1):47-59. [16] Gramzow L, Theiβen G. Phylogenomics of MADS-box genes in plants—two opposing life styles in one gene family [J]. Biology, 2013, 2:1150-1164. [17] Shima Y, Kitagawa M, Fujisawa M, et al. Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcrip-tion factor complexes with RIN [J]. Plant Mol Biol, 2013, 82(4-5):427-438. [18] Melzer R, Verelst W, Theiβen G. The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in floral quartet-like complexes in vitro [J]. Nucl Acids Res, 2009, 37(1):144-157. [19] De Folter S, Angenent GC. Trans meets cis in MADS science [J]. Trends in Plant Sci, 2006, 11(5):224-231. [20] Kaufmann K, Melzer R, Theiβen G. MIKC-type MADS-domain proteins:structural modularity, protein interactions and network evolution in land plants [J]. Gene, 2005, 347(2):183-198. [21] Wu W, Huang X, Cheng J, et al. Conservation and evolution in and among SRF- and MEF2-type MADS domains and their binding sites [J]. Mol Biol Evol, 2011, 28(1):501-511. [22] Veron AS, Kaufmann K, Bornberg-Bauer E. Evidence of interaction network evolution by whole-genome duplications:a case study in MADS-Box Proteins [J]. Mol Biol Evol, 2007, 24(3):670-680. [23] Causier B, Davies B. Analysing protein-protein interactions with the yeast two hybrid system [J]. Plant Mol Biol, 2002, 50(6):855-870. [24] Rijpkema AS, Gerats T, Vandenbussche M. Evolutionary complexity of MADS complexes [J]. Curr Opin Plant Biol, 2007, 10(1):32-38. [25] Soltis DE, Chanderbali AS, Kim S, et al. The ABC model and its applicability to basal angiosperms [J]. Ann Bot, 2007, 100(2):155-163. [26] Hernandez T, Martinez Castillo LP, Alvarez Buylla ER. Functional diversification of BMADS-Box homeotic regulators of flower development:adaptive evolution in protein-protein interaction domains after major gene duplication events [J]. Mol Biol Evol, 2007, 24(2):465-481. [27] Egea-Cortines M, Saedler H, Sommer H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus [J]. EMBO J, 1999, 18(19):5370-5379. [28] Leseberg CH, Eissler CL, Wang X, et al. Interaction study of MADS-domain proteins in tomato [J]. J Exp Bot, 2008, 59(8):2253-2265. [29] Immink R, Tonaco I, de Folter S, et al. SEPALLATA3:the ‘glue’ for MADS box transcription factor complex formation [J]. Genome Biology, 2009, 10(2):R24. [30] Ruokolainen S, Ng YP, Albert VA, et al. Large scale interaction analysis predicts that the Gerbera hybrida floral E function is provided both by general and specialized proteins [J]. BMC Plant Biol, 2010, 10:129. [31] Melzer R, Theiβen G. Reconstitution of ‘floral quartets’ in vitro involving class B and class E floral homeotic proteins [J]. Nucl Acids Res, 2009, 37(8):2723-2736. [32] Smaczniak C, Immink RG, Mui?o JM, et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development [J]. Proc Natl Acad Sci USA, 2012, 109(5):1560-1565. [33] De Folter S, Shchennikova AV, Franken J, et al. A B-sister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis [J]. Plant Journal, 2006, 47(6):934-946. [34] Kaufmann K, Anfang N, Saedler H, Theissen G. Mutant analysis, protein-protein interactions and subcellular localization of the Arabidopsis B-sister(ABS)protein [J]. Molecular Genetics and Genomics, 2005, 274(2):103-118. [35] 黄方, 迟英俊, 喻德跃. 植物MADS-box基因研究进展[J], 南京农业大学学报, 2012, 35(5):9-18. [36] ó’Maoiléidigh DS, Graciet E, Wellmer F. Gene networks controlling Arabidopsis thaliana flower development [J]. New Phytologist, 2014, 201(1):16-30. [37] Karlova R, Boeren S, Russinova E, et al. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 protein complex includes BRASSINOSTEROID-INSENSITIVE1 [J]. Plant Cell, 2006, 18(3):626-638. [38] Helliwell CA, Wood CC, Robertson M, et al. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex [J]. Plant J, 2006, 46(2):183-192. [39] Yang YZ, Jack T. Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins [J]. Plant Mol Biol, 2004, 55(1):45-59. [40] Nougalli Tonaco I, Borst J, de Vries S, et al. In vivo imaging of MADS box transcription factor interactions [J]. J Exp Bot, 2006, 57(1):33-42. [41] De Folter S, Immink RGH, Kieffer M, et al. Comprehensive interaction map of the Arabidopsis MADS box transcription factors [J]. Plant Cell, 2005, 17(5):1424-1433. [42] Verelst W, Saedler H, Munster T. MIKC* MADS-protein complexes bind motifs enriched in the proximal region of late pollen-specific Arabidopsis promoters [J]. Plant Physiol, 2007, 143(1):447-460. [43] Wu XL, Dinneny JR, Crawford KM, et al. Modes of intercellular transcription factor movement in the Arabidopsis apex [J]. Development, 2003, 130(16):3735-3745. [44] He C, Tian Y, Saedler R, et al. The MADS-domain protein MPF1 of Physalis Xoridana controls plant architecture, seed development and flowering time [J]. Planta, 2010, 231(3):767-777. [45] Van Dijk ADJ, ter Braak CJF, Immink RG, et al. Predicting and understanding transcription factor interactions based on sequence level determinants of combinatorial control [J]. Bioinformatics, 2008, 24(1):26-33. [46] Dreni L, Pilatone A, Yun D, et al. Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy [J]. Plant Cell, 2011, 23(8):2850-2863. [47] Kaufmann K, Wellmer F, Mui?o JM, et al. Orchestration of floral initiation by APETALA1 [J]. Science, 2010b, 328(5974):85-89. |
[1] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[2] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[3] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[4] | ZHANG Xin-bo, CUI Hao-liang, SHI Pei-hua, GAO Jin-chun, ZHAO Shun-ran, TAO Chen-yu. Research Progress in Low-input Chromatin Immunoprecipitation Assay [J]. Biotechnology Bulletin, 2023, 39(4): 227-235. |
[5] | ZHAO Meng-liang, GUO Yi-ting, REN Yan-jing. Identification and Analysis of WRKY Transcription Factor Family Genes in Helianthus tuberosus [J]. Biotechnology Bulletin, 2023, 39(2): 116-125. |
[6] | HAN Fang-ying, HU Xin, WANG Nan-nan, XIE Yu-hong, WANG Xiao-yan, ZHU Qiang. Research Progress in Response of DREBs to Abiotic Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(11): 86-98. |
[7] | FENG Ce-ting, JIANG Lyu, LIU Xing-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 283-296. |
[8] | CHEN Hao-ting, ZHANG Yu-jing, LIU Jie, DAI Ze-min, LIU Wei, SHI Yu, ZHANG Yi, LI Tian-lai. Functional Analysis of WRKY6 Gene in Tomato Under Low-phosphorus Stress [J]. Biotechnology Bulletin, 2023, 39(10): 136-147. |
[9] | SHEN Yue, TAO Bao-jie, HUA Xia, LV Bing, LIU Li-jun, CHEN Yun. Research Progress in the Interactions of Strigolactone with Hormones on Regulating Root Growth [J]. Biotechnology Bulletin, 2022, 38(8): 24-31. |
[10] | CHEN Gui-fang, YANG Jia-yi, GAO Yun-hua, REN Ge. Research Progress in Chromatin Immunoprecipitation Followed by Sequencing [J]. Biotechnology Bulletin, 2022, 38(7): 40-50. |
[11] | ZHANG Bin, YANG Xin-xia. Identification of Key Transcription Factors in Response to Salt Stress in Rice [J]. Biotechnology Bulletin, 2022, 38(3): 9-15. |
[12] | TANG Xiao-li, JIANG Fu-dong, ZHANG Hong-xia. Research Progress in the Functions of SINA E3 Ubiquitin Ligase in Plant [J]. Biotechnology Bulletin, 2022, 38(10): 10-17. |
[13] | YU Jing, YANG Hui, YU Shi-zhou, ZHAO Hui-na, ZHENG Qing-xia, WANG Bing, LEI Bo. Construction of Yeast One-hybrid Bait Vector of Tobacco NtCBT Gene Promoter and Screening of Interacted Proteins [J]. Biotechnology Bulletin, 2022, 38(10): 73-79. |
[14] | LI Qi, WANG Yi-chao, LIU Chang, TAN He-xin. Genome-wide Identification and Bioinformatics Analysis of R2R3-MYB Transcription Factors in Artemisia annua [J]. Biotechnology Bulletin, 2021, 37(8): 65-74. |
[15] | ZHANG Tong, LI Zhi-qiang, WU Guo-qiang. Role of WRKY Transcription Factor in Plant Response to Stresses [J]. Biotechnology Bulletin, 2021, 37(10): 203-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||