[1]张春宝, 赵丽梅, 赵洪锟, 等. 植物蛋白激酶研究进展[J]. 生物技术通报, 2011(10):17-23.
[2]Banks JA. Selaginella and 400 million years of separation[J]. Annual Review of Plant Biology, 2009, 60:223-238.
[3]Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genome(Oryza sativa L. ssp. japonica)[J]. Science, 2002, 296(5565):92-100.
[4]Komatsu K, Suzuki N, Kuwamura M, et al. Group A PP2Cs evolved in land plants as key regulators of intrinsic desiccation tolerance[J]. Nature Communications, 2013, 4:2219.
[5]Merchant SS, Prochnik SE, Vallon O, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions[J]. Science, 2007, 318(5848):245-250.
[6]Rensing SA, Lang D, Zimmer AD, et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants[J]. Science, 2008, 319(5859):64-69.
[7]Galletti R, Ferrari S, De Lorenzo G. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide-or flagellin-induced resistance against Botrytis cinerea[J]. Plant Physiol, 2011, 157(2):804-814.
[8]胡帅, 王芳展, 刘振宁, 等. PYR/PYL/RCAR 蛋白介导植物ABA 的信号转导[J]. 遗传, 2012, 34(5):560-572 .
[9]Raghavendra AS, Gonugunta VK, Christmann A, et al. ABA perception and signalling[J]. Trends Plant Sci, 2010, 15(7):395-401.
[10]Umezawa T, Nakashima K, Miyakawa T, et al. Molecular basis of the core regulatory network in ABA responses:sensing, signaling and transport[J]. Plant and Cell Physiology, 2010, 51(11):1821-1839.
[11]Daszkowska-Golec A, Wojnar W, Rosikiewicz M, et al. Arabidopsis suppressor mutant of abh1 shows a new face of the already known players:ABH1(CBP80)and ABI4-in response to ABA and abiotic stresses during seed germination[J]. Plant Molecular Biology, 2013, 81(1-2):189-209.
[12]Leung J, Merlot S, Giraudat J. The Arabidopsis ABSCISIC ACID-INSENSITIVE2(ABI2)and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduc-tion[J]. The Plant Cell Online, 1997, 9(5):759-771.
[13]Rodriguez PL, Benning G, Grill E. ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis[J]. FEBS Letters, 1998, 421(3):185-190.
[14]Merlot S, Gosti F, Guerrier D, et al. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway[J]. The Plant Journal, 2001, 25(3):295-303.
[15]Fujita Y, Fujita M, Shinozaki K, et al. ABA-mediated transcriptional regulation in response to osmotic stress in plants[J]. Journal of Plant Research, 2011, 124(4):509-525.
[16]Umezawa T, Sugiyama N, Mizoguchi M, et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis[J]. Proc Natl Acad Sci USA, 2009, 106(41):17588-17593.
[17]Yoshida T, Nishimura N, Kitahata N, et al. ABA-hypersensitive germination3 encodes a protein phosphatase 2C(AtPP2CA)that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs[J]. Plant Physiology, 2006, 140(1):115-126.
[18]Koornneef M, Reuling G, Karssen CM. The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana[J]. Physiologia Plantarum, 1984, 61(3):377-383.
[19]Rodriguez PL, Leube MP, Grill E. Molecular cloning in Arabidopsis thaliana of a new protein phosphatase 2C(PP2C)with homology to ABI1 and ABI2[J]. Plant Molecular Biology, 1998, 38(5):879-883.
[20]Fujita Y, Nakashima K, Yoshida T, et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis[J]. Plant and Cell Physiology, 2009, 50(12):2123-2132.
[21]Nishimura N, Yoshida T, Kitahata N, et al. ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed[J]. The Plant Journal, 2007, 50(6):935-949.
[22]Szostkiewicz I, Richter K, Kepka M, et al. Closely related receptor complexes differ in their ABA selectivity and sensitivity[J]. The Plant Journal, 2010, 61(1):25-35.
[23]Brandt B, Brodsky DE, Xue S, et al. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action[J]. Proc Natil Acad Sci USA, 2012, 109(26):10593-10598.
[24]Saez A, Rodrigues A, Santiago J, et al. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis[J]. Plant Cell, 2008, 20(11):2972-2988.
[25]Ohta M, Guo Y, Halfter U, et al. A novel domain in the protein kin-ase SOS2 mediates interaction with the protein phosphatase 2C AB-I2[J]. Proc Natl Acad Sci USA, 2003, 100(20):11771-11776.
[26]Ma Y, Szostkiewicz I, Korte A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J]. Science, 2009, 324(5930):1064-1068.
[27]陈金焕, 夏新莉, 尹伟伦. 植物 2C 类蛋白磷酸酶及其在逆境信号转导中的作用[J]. 北京林业大学学报, 2010(5):168-171.
[28]Melcher K, Ng LM, Zhou XE, et al. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors[J]. Nature, 2009, 462(7273):602-608.
[29]Bhaskara GB, Nguyen TT, Verslues PE. Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs[J]. Plant Physiology, 2012, 160(1):379-395.
[30]Sun HL, Wang XJ, Ding WH, et al. Identification of an important site for function of the type 2C protein phosphatase ABI2 in abscisic acid signalling in Arabidopsis[J]. Journal of Experimental Botany, 2011, 62(15):5713-5725.
[31]Antoni R, Gonzalez-Guzman M, Rodriguez L, et al. PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root[J]. Plant Physiol, 2013, 161(2):931-941.
[32]Kiegerl S, Cardinale F, Siligan C, et al. SIMKK, a mitogen-activated protein kinase(MAPK)kinase, is a specific activator of the salt stress-induced MAPK, SIMK[J]. The Plant Cell Online, 2000, 12(11):2247-2258.
[33]Schweighofer A, Kazanaviciute V, Scheikl E, et al. The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis[J]. The Plant Cell Online, 2007, 19(7):2213-2224.
[34]吴涛, 宗晓娟, 谷令坤, 等. 植物中的 MAPK 及其在信号传导中的作用[J]. 生物技术通报, 2006(5):1-7.
[35]Brock AK, Willmann R, Kolb D, et al. The Arabidopsis mitogen-activated protein kinase phosphatase PP2C5 affects seed germination, stomatal aperture, and abscisic acid-inducible gene expression[J]. Plant Physiology, 2010, 153(3):1098-1111.
[36]Umbrasaite J, Schweighofer A, Kazanaviciute V, et al. MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis[J]. PloS One, 2010, 5(12):e15357.
[37]Xing Y, Jia W, Zhang J. AtMKK1 and AtMPK6 are involved in abscisic acid and sugar signaling in Arabidopsis seed germination[J]. Plant Molecular Biology, 2009, 70(6):725-736.
[38]Tang D, Christiansen KM, Innes RW. Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase[J]. Plant Physiology, 2005, 138(2):1018-1026.
[39]Schwarz US, Bischofs IB. Physical determinants of cell organization in soft media[J]. Medical Engineering & Physics, 2005, 27(9):763-772.
[40]Wang P, Song CP. Guard-cell signalling for hydrogen peroxide and abscisic acid[J]. New Phytologist, 2008, 178(4):703-718.
[41]Andreasson E, Ellis B. Convergence and specificity in the Arabidopsis MAPK nexus[J]. Trends in Plant Science, 2010, 15(2):106-113.
[42]El-Maarouf-Bouteau H, Bailly C. Oxidative signaling in seed germination and dormancy[J]. Plant Signaling & Behavior, 2008, 3(3):175.
[43]Jammes F, Song C, Shin D, et al. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling[J]. Proc Natl Acad Sci USA, 2009, 106(48):20520-20525.
[44]Wang XJ, Zhu SY, Lu YF, et al. Two coupled components of the mitogen-activated protein kinase cascade MdMPK1 and MdMKK1 from apple function in ABA signal transduction[J]. Plant and Cell Physiology, 2010, 51(5):754-766.
[45]Benhamed M, Bertrand C, Servet C, et al. Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression[J]. The Plant Cell Online, 2006, 18(11):2893-2903.
[46]Earley KW, Shook MS, Brower-Toland B, et al. In vitro specificities of Arabidopsis co-activator histone acetyltransferases:implications for histone hyperacetylation in gene activation[J]. The Plant Journal, 2007, 52(4):615-626.
[47]Widjaja I, Lassowskat I, Bethke G, et al. A protein phosphatase 2C, responsive to the bacterial effector AvrRpm1 but not to the AvrB effector, regulates defense responses in Arabidopsis[J]. The Plant Journal, 2010, 61(2):249-258.
[48]Bertrand C, Bergounioux C, Domenichini S, et al. Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/AGAMOUS pathway[J]. Journal of Biological Chemistry, 2003, 278(30):28246-28251.
[49]Long JA, Ohno C, Smith ZR, et al. TOPLESS regulates apical embryonic fate in Arabidopsis[J]. Science, 2006, 312(5779):1520-1523.
[50]Puthiyaveetil S, Ibrahim IM, Allen JF. Oxidation-reduction signalling components in regulatory pathways of state transitions and photosystem stoichiometry adjustment in chloroplasts[J]. Plant Cell Environ, 2012, 35(2):347-359. |