Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (1): 39-45.doi: 10.13560/j.cnki.biotech.bull.1985.2015.01.006
Previous Articles Next Articles
Zhang Lanhe, Zuo Zhengyan1,2, Wang Xuming 2
Received:
2014-04-23
Online:
2015-01-09
Published:
2015-01-10
Zhang Lanhe, Zuo Zhengyan, Wang Xuming. Research Progress on Microbial Community Structure in Solid-phase Denitrification Systems[J]. Biotechnology Bulletin, 2015, 31(1): 39-45.
[1] Ovez B, Ozgen S, Yuksel M. Biological denitrification in drinking water using Glycyrrhiza glabra and Arunda donax as the carbon source[J]. Process Biochem, 2006, 41(7):1539-1544. [2] Ravnjak M, Vrtov?ek J, Pintar A. Denitrification of drinking water in a two-stage biofilm membrane bioreactor[J]. Desalin Water Treat, 2013, 51(28-30):5402-5408. [3] Isaka K, Kimura Y, Osaka T, et al. High-rate denitrification using polyethylene glycol gel carriers entrapping heterotrophic denitrifying bacteria[J]. Water Res, 2011, 46:4941-4948 [4] 张兰河, 孙立娇, 仇天雷, 等. 固体碳源填充床反应器脱除污水硝态氮效能的预测模型[J]. 农业工程学报, 2013, 29(6):209-213. [5] 赵方超. 不同外源性碳源对活性污泥反硝化能力影响的研究[J]. 剑南文学(经典教苑), 2012, 12:187. [6] Chu L, Wang J. Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor[J]. Chem Eng J, 2011, 170(1):220-225. [7] Osaka T, Shirotani K, Yoshie S, et al. Effects of carbon source on denitrification efficiency and microbial community structure in a saline wastewater treatment process[J]. Water Res, 2008, 42(14):37---09-3718. [8] Boley A, Müller WR, Haider G. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems[J]. Aquacult Eng, 2000, 22(1):75-85. [9] Hiraishi A, Khan ST. Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment[J]. Appl Microbiol Biotechnol, 2003, 61(2):103-109. [10] 王旭明, 王建龙. 利用固相反硝化工艺去除饮用水原水中的硝酸盐[J]. 中国给水排水, 2008, 24(6):6-10. [11] 王旭明, 从二丁, 罗文龙, 等. 固体碳源用于异养反硝化去除地下水中的硝酸盐[J]. 中国科学, 2009, 38(9):824-828. [12] Chu L, Wang J. Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source[J]. Chemosphere, 2013, 91(9):1310-1316. [13] 曹文平, 张后虎, 汪银梅. 以纤维素物质为反硝化碳源和载体去除水中硝酸盐[J]. 工业水处理, 2012, 32(2):5-9. [14] 李秀辰, 李俐俐, 张国琛, 等. 养殖固体废弃物作碳源的海水养殖废水反硝化净化效果[J]. 农业工程学报, 2010, 44(26):275-279. [15] 谭洪新, 赖才胜, 罗国芝, 等. 以可生物降解聚合物为碳源去除海水闭合循环养殖系统中的硝酸盐[J]. 海洋科学, 2010, 34(6):22-27. [16] 王莹, 胡春胜. 环境中的反硝化微生物种群结--构和功能研究进展[J]. 中国生态农业学报, 2010, 18(6):1378-1384. [17] AndreeBen B, Steinbüchel A. Biosynthesis and biodegradation of 3-hydroxypropionate-containing polyesters[J]. Appl Environ Microbiol, 2010, 76(15):4919-4925. [18] Gutierrez-Wing MT, Malone RF, Rusch KA. Evaluation of polyhy-droxybutyrate as a carbon source for recirculating aquaculture water denitrification[J]. Aquacult Eng, 2012, 51:36-43. [19] Müller WR, Heinemann A, Sch?fer C, et al. Aspects of PHA(poly-ε-hydroxy-butyric-acid)as an H-donor for denitrification in water treatment processes[J]. Water Supply, 1992, 10(3):79-90. [20] Mergaert J, Boley A, Cnockaert MC, et al. Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor[J]. Syst Appl Microbiol, 2001, 24(2):303-310. [21] Khan S T, Horiba Y, Takahashi N, et al. Activity and community composition of denitrifying bacteria in poly(3-hydroxybutyrate-co3-hydroxyvalerate)-using solid-phase denitrification processes[J]. Microbes Environ, 2007, 22(1):20-31. [22] Schloe K, Gillis M, Hoste B, et al. Polyphasic characterization of poly-3-hydroxybutyrate-co-3-hydroxyvalerate(PHBV)metaboli-sing and denitrifying Acidovorax sp. strains[J]. Syst Appl Micro-biol, 2000, 23(3):364-372. [23] Khan ST, Hiraishi A. Diaphorobacter nitroreducens gen. nov., sp. nov., a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge[J]. J Gen Appl Microbiol, 2002, 48(6):299-308. [24] Khan ST, Horiba Y, Yamamoto M, et al. Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach[J]. Appl Environ Microbiol, 2002, 68(7):3206-3214. [25] 张兰河, 刘丽丽, 仇天雷, 等. 以PHBV为碳源去除循环水养殖系统的硝酸盐及生物膜中微生物群落动态[J]. 微生物学报, 2014, 54(9):1053-1062. [26] Khan ST, Hiraishi A, Isolation and characterization of a new poly(3-hydroxybutyrate)-degrading, denitrifying bacterium from activated sludge[J]. FEMS Microbiol Lett, 2001, 205(2):253-217. [27] 徐影, 仇天雷, 韩梅琳, 等. PCR-DGGE技术解析固体碳源表面生物膜的微生物群落结构[J]. 环境科学, 2013, 34(8):3257-3263. [28] Zhang T, Chaudhry MT, Liu ZP. Genetic and biochemical characte-rization of 3-hydroxybutyrate depolymerase from Diaphorobcter sp. PCA039[J]. World J Microbiol Biotechnol, 2010, 26(10):1803-1811. [29] 封羽涛, 吴为中. 可降解聚合物PCL, PBS在低有机污染水中固相反硝化脱氮效果比较[J]. 生态环境学报, 2011, 20(6):1127-1132. [30] Boley A, Mergaert J, Muller C, et al. Denitrification and pesticide elimination in drinking water treatment with the biodegradable polymer poly(ε-caprolactone)(PCL)[J]. Acta Hydroch Hydrob, 2003, 31(3):195-203. [31] Mergaert J, Cnockaert MC, Swings J. Thermomonas fusca sp. nov. and Thermomonas brevis sp. nov., two mesophilic species isolated from a denitrification reactor with poly(ε-caprolactone)plastic granules as fixed bed, and emended description of the genus Thermomonas[J]. Int J Syst Evol Microbiol, 2003, 53(6):1961-1966. [32] 秦楠, 栗东芳, 杨瑞馥. 高通量测序技术及其在微生物学研究中的应用[J]. 微生物学报, 2011, 51(4):445-457. [33] Ma JX, Wang ZW, Yang Y, et al. Correlating microbial community structure and composition with aeration intensity in submerged membrane bioreactors by 454 high-throughput pyrosequencing[J]. Water Res, 2013, 47(2):859-869. [34] Wu W, Yang L, Wang J. Denitrification performance and microbial diversity in a packed-bed bioreactor using PCL as carbon source and biofilm carrier[J]. Appl Microbiol Biotechnol, 2013, 97(6):2725-2733. [35] Horiba Y, Khan S, Hiraishi A. Characterization of the microbial community and culturable denitrifying bacteria in a solid-phase denitrification process using poly(ε-caprolactone)as the carbon and energy source[J]. Microbes Environ, 2005, 20(1):25-33. [36] Shen Z, Zhou Y, Hu J, et al. Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support[J]. J Hazard Mater, 2013, 250-251:431-438. [37] 董明来, 罗国芝, 刘倩, 等. 聚丁二酸丁二醇酯反硝化反应器的脱氮效果及微生物群落变化研究[J]. 环境污染与防治, 2011, 33(10):48-54. [38] Wu W, Yang L, Wang J. Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor[J]. Environ Sci Pollut Res, --2013, 20(1):333-339. [39] Wang X, Xing L, Qiu T, et al. Simultaneous removal of nitrate and pentachlorophenol from simulated groundwater using a biodenitrification reactor packed with corncob[J]. Environ Sci Pollut Res, 2013, 20(4):2236-2243. [40] 王旭明, 王建龙. 利用固相反硝化同时去除水中硝酸盐和4-氯酚[J]. 环境科学, 2009, 30(5):1420-1424. [41] 王小娇, 席亚萍, 张明. 生物反硝化脱氮碳源上微生物的多样性[J]. 上海化工, 2010(6):1-4. [42] 范振兴, 王建龙. 利用聚乳酸作为反硝化固体碳源的研究[J]. 环境科学, 2009, 30(8):2315-2319. [43] Takahashi M, Yamada T, Tanno M, et al. Nitrate removal efficiency and bacterial community dynamics in denitrification processes using poly(L-lactic acid)as the solid substrate[J]. Microbes Environ, 2010, 26(3):212-219. [44] Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, et al. PCR-induced sequence artifacts and bias:insights from comparison of two 16S rRNA clone libraries constructed from the same sample[J]. Appl Environ Microbiol, 2005, 71(12):8966-8969. [45] Cao C, Jiang W, Wang B, et al. Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event[J]. Environ Sci Technol, 2014, 48(3):1499-1507. [46] Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59-65. |
[1] | ZHAO Zhi-xiang, WANG Dian-dong, ZHOU Ya-lin, WANG Pei, YAN Wan-rong, YAN Bei, LUO Lu-yun, ZHANG Zhuo. Control of Pepper Fusarium Wilt by Bacillus subtilis Ya-1 and Its Effect on Rhizosphere Fungal Microbial Community [J]. Biotechnology Bulletin, 2023, 39(9): 213-224. |
[2] | ZHAO Sai-sai, ZHANG Xiao-dan, JIA Xiao-yan, TAO Da-wei, LIU Ke-yu, NING Xi-bin. Investigation on the Complex Mutagenesis Selection of High-yield Nitrate Reductase Strain Staphylococcus simulans ZSJ6 and Its Enzymatic Properties [J]. Biotechnology Bulletin, 2023, 39(4): 103-113. |
[3] | REN Si-yu, JIANG Cong-yi, YU Tao, KANG Rui, JIANG Xiao-bing. Role of agr System in the Antimicrobial Resistance and Biofilm Formation of Listeria monocytogenes [J]. Biotechnology Bulletin, 2023, 39(2): 254-262. |
[4] | SHI Cheng-long, WANG Xi-wu, LI An-qi, QIAN Sen-he, WANG Zhou, ZHAO Shi-guang, LIU Yan, XUE Zheng-lian. Effect of ε-Polylysine on the Cell Structure and Biofilm Formation of Cronobacter sakazakii [J]. Biotechnology Bulletin, 2022, 38(9): 147-157. |
[5] | ZHAO Lin-yan, GUAN Hui-lin, WANG Ke-shu, LU Yan-lei, XIANG Ping, WEI Fu-gang, YANG Shao-zhou, XU Wu-mei. Effects of Soil Moisture on the Microbial Community Under Continuous Cropping of Panax notoginseng [J]. Biotechnology Bulletin, 2022, 38(7): 215-223. |
[6] | ZHAO Lin-yan, GUAN Hui-lin, XIANG Ping, LI Ze-cheng, BAI Yu-long, SONG Hong-chuan, SUN Shi-zhong, XU Wu-mei. Composition Features of Microbial Community in the Rhizospheric Soil of Bletilla striata with Root Rot [J]. Biotechnology Bulletin, 2022, 38(2): 67-74. |
[7] | GAO Hui-hui, JIA Chen-bo, HAN Qin, SU Jian-yu, XU Chun-yan. Microbiological Mechanism of Root Rot of Lycium barbarum Ningqi-7 [J]. Biotechnology Bulletin, 2022, 38(12): 244-251. |
[8] | YAN Hui-lin, LU Guang-xin, DENG Ye, GU Song-song, YAN Cheng-liang, MA Kun, ZHAO Yang-an, ZHANG Hai-juan, WANG Ying-cheng, ZHOU Xue-li, DOU Sheng-yun. Effects of Rhizobium Seed Dressing on the Soil Microbial Community of Grass-legume Mixtures in Alpine Regions [J]. Biotechnology Bulletin, 2022, 38(10): 204-215. |
[9] | CHEN Meng-yan, BAI Jie, KE Wen-can, XU Dong-mei, AI Lin, GUO Xu-sheng. Research Advances in Silage Microbial Communities and Functions [J]. Biotechnology Bulletin, 2021, 37(9): 11-23. |
[10] | MAO Ting, NIU Yong-yan, ZHENG Qun, YANG Tao, MU Yong-song, ZHU Ying, JI Bin, WANG Zhi-ye. Effects of Microbial Inoculants on the Fermentation Quality and Microbial Community Diversity of Alfalfa Silage [J]. Biotechnology Bulletin, 2021, 37(9): 86-94. |
[11] | YUAN Yuan, HUANG Hai-chen, LI Lin, LIU Guo-hui, FU Jun-sheng, WU Xiao-ping. Effect of Lime on Preventing and Controlling Continuous Cropping Obstacle of Ganoderma lingzhi and Analysis of Its Microbial Community [J]. Biotechnology Bulletin, 2021, 37(4): 70-84. |
[12] | ZHANG Yang, CHENG Peng, LI Xiao-fen, CHEN Hong-wei. Research Progress on Anti-biofilm Peptides [J]. Biotechnology Bulletin, 2021, 37(2): 216-223. |
[13] | ZHAO Xu, WANG Wen-li, LI Juan. Effects of Weathered Coal Additives on the Odor and Microbial Community Diversity During Cow Manure Aerobic Composting [J]. Biotechnology Bulletin, 2021, 37(12): 104-112. |
[14] | TAN Hao, LIU Tian-hai, YAN Shi-jie, YU Yang, JIANG Lin, PENG Wei-hong. Impacts of Morel Cultivation on the Microbial Community and Physiochemical Characteristics in a Substratum of Desert Sand [J]. Biotechnology Bulletin, 2021, 37(11): 166-177. |
[15] | YANG Zong-zheng, ZHAO Xiao-yu, LIU Dan, XU Wen-shuai, WU Zhi-guo. Bioremediation of Cr(VI)-contaminated Farmland Soil by Microbacterium sp. BD6 [J]. Biotechnology Bulletin, 2021, 37(10): 81-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||