Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (10): 89-98.doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.016
• Technique • Previous Articles Next Articles
Wang Hefei, Liu Dongjun
Received:
2014-12-22
Online:
2015-10-28
Published:
2015-10-28
Wang Hefei, Liu Dongjun. Transgenic Technology: Establishment of Animal Models and Treatment of Diabetes Mellitus[J]. Biotechnology Bulletin, 2015, 31(10): 89-98.
[1]黄建萍, 陈大灵. 糖尿病的流行趋势及预防控制策略的研究进展[J]. 现代预防医学, 2008, 35(5):962-964. [2]Alam U, Asghar O, Azmi S, et al. General aspects of diabetes mellitus[J]. Handb Clin Neurol, 2014, 126:211-222. [3]Junod A, Lambert AE, Stauffacher W, et al. Diabetogenic action of streptozotocin:relationship of dose to metabolic response[J]. J Clin Invest, 1969, 48(11):2129-2139. [4]Lenzen S, Patten U. Alloxan history and mechanism of action[J]. Diabetologia, 1988, 31(6):337-342. [5]Schnedl WJ, Ferber S, Johnson JH, et al. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells[J]. Diabetes, 1994, 43:1326-1333. [6]de la Garza-Rodea AS, Kna?n-Shanzer S, den Hartigh JD, et al. Anomer-equilibrated streptozotocin solution for the induction of experimental diabetes in mice(Mus musculus)[J]. J Am Assoc Lab Anim Sci, 2010, 49(1):40-44. [7]Rees DA, Alcolado JC. Animal models of diabetes mellitus[J]. Diabet Med, 2005, 22:359-370. [8]King C, Sarvetnick N. The incidence of type-1 diabetes in NOD mice is modulated by restricted flora not germ-free conditions[J]. PLoS One, 2011, 6(2):e17049. [9]Crisa L, Mordes JP, Rossini AA. Autoimmune diabetes mellitus in the BB rat[J]. Diabetes Metab Rev, 1992, 8:4-37. [10]Scott J. The spontaneously diabetic BB rat:sites of the defects leading to autoimmunity and diabetes mellitus:a review[J]. Curr Top Microbiol Immunol, 1990, 156:1-14. [11]Ghanaat-Pour H, Huang Z, Lehtihet M, et al. Global expression profiling of glucose-regulated genes in pancreatic islets of spontaneously diabetic Goto-Kakizaki rats[J]. J Mol Endocrinol, 2007, 39:135-150. [12]Iwatsuka H, Shino A, Suzuoki Z. General survey of diabetic features of yellow KK mice[J]. Endocrinol Jpn, 1970, 17:23-35. [13]Castle CK, Colca JR, Melchior GW. Lipoprotein profile characterization of the KKA(y)mouse, a rodent model of type II diabetes, before and after treatment with the insulin-sensitizing agent pioglitazone[J]. Arterioscler Thromb, 1993, 13:302-309. [14]Ikegami H, Fujisawa T, Ogihara T. Mouse models of type 1 and type 2 diabetes derived from the same closed colony:genetic susceptibility shared between two types of diabetes[J]. ILAR J, 2004, 45:268-277. [15]Ueda H, Ikegami H, Kawaguchi Y, et al. Age-dependent changes in phenotypes and candidate gene analysis in a polygenic animal model of Type II diabetes mellitus; NSY mouse[J]. Diabetologia, 2000, 43:932-938. [16]Ueda H, Ikegami H, Yamato E, et al. The NSY mouse:a new animal model of spontaneous NIDDM with moderate obesity[J]. Diabetologia, 1995, 38:503-508. [17]吴勇军, 喻嵘, 胡伟, 等. 滋阴益气活血解毒组方对MKR转基因2型糖尿病小鼠糖代谢的影响[J]. 湖南中医药大学学报, 2007, 27(2):20-23. [18]Accili D, Drago J, Lee EJ, et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene[J]. Nat Genet, 1996, 12:106-109. [19]Joshi RL, Lamothe B, Cordonnier N, et al. Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality[J]. EMBOJ, 1996, 15:1542-1547. [20]Kulkarni RN, Bruning JC, Winnay JN, et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes[J]. Cell, 1999, 96:329-339. [21]Bruning JC, Michael MD, Winnay JN, et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance[J]. Mol Cell, 1998, 2:559-569. [22]Fernandez AM, Kim JK, Yakar S, et al. Functional inactivation of the IGF-1 and insulin receptor in skeletal muscle causes type 2 diabetes[J]. Genes Dev, 2001, 15:1926-1934. [23]Kim H, Haluzik M, Gavrilova O, et al. Thiazolidinediones improve insulin sensitivity in adipose tissue and reduce the hyperlipidaemia without affecting the hyperglycaemia in a transgenic model of type 2 diabetes[J]. Diabetologia, 2004, 47(12):2215-2225. [24]Kim H, Pennisi P, Zhao H, et al. MKR mice are resistant to the metabolic actions of both insulin and adiponectin:discordance between insulin resistance and adiponectin responsiveness[J]. Am J Physiol Endocrinol Metab, 2006, 291(2):E298-E305. [25] Patricia P, Oksana G, Jennifer SP, et al. Recombinant human insulin-like growth factor-1(rhIGF-1)treatment inhibits gluconeogenesis in a transgenic mouse model of type 2 diabetes mellitus(DM)[J]. Endocrinology, 2006, 147:2619- 2630. [26]Kumar A, Harrelson T, Lewis NE, et al. Multi-tissue computational modeling analyzes pathophysiology of type 2 diabetes in MKR mice[J]. PLoS One, 2014, 9(7):e102319. [27]Li X, Wu X, Camacho R, et al. Intracerebroventricular leptin infusion improves glucose homeostasis in lean type 2 diabetic MKR mice via hepatic vagal and non-vagal mechanisms[J]. PLoS One, 2011, 6(2):e17058. [28]Maddux BA, Sbraccia P, Kumakura S, et al. Membrane glycoprotein PC-1 and insulin resistance in non-insulin-dependent diabetes mellitus[J]. Nature, 1995, 373:448-451. [29]Kumakura S, Maddux BA, Sung CK. Overexpression of membrane glycoprotein PC-1 can influence insulin action at a post-receptor site[J]. J Cell Biochem, 1998, 68:366-377. [30]Teno S, Kanno H, Oga S, et al. Increased activity of membrane glycoprotein PC-1 in the fibroblast from non-insulin-dependent diabetes mellitus patients with insulin resistance[J]. Diabet Res Clin Pract, 1999, 45:25-30. [31]Menzaghi C, Di Paola R, Baj G, et al. Insulin modulates PC-1 processing and recruitment in cultured human cells[J]. Am J Physical Endocrinol Metab, 2003, 284:514-520. [32]Frittitta L, Sbraccia P, Costanzo BV, et al. High insulin levels do not influence PC-1 gene expression and protein content in human muscle tissue and hepatoma cells[J]. Diabet Metab Res Rev, 2000, 16:26-32. [33]王毅, 骆惠均, 王芳, 等. PC-1转基因小鼠的建立及其与2型糖尿病发病的关系[J]. 中华内分泌代谢, 2005, 21:554-556. [34]Jemaa Z, Kallel A, et al. The Gly482Ser polymorphism of the peroxisome proliferator-activated receptor-γ coactivator-1α(PGC-1α)is associated with type 2 diabetes in Tunisian population[J]. Diabetes Metab Syndr, 2013, pii:S1871-4021(13)00101-X. [35]Choi J, Ravipati A, Nimmagadda V, et al. Potential roles of PINK1 for increased PGC-1α-mediated mitochondrial fatty acid oxidation and their associations with Alzheimer disease and diabetes[J]. Mitochondrion, 2014, 18C:41-48. [36]Wu HH, Liu NJ, et al. Association and interaction analysis of PPA-RGC1A and serum uric acid on type 2 diabetes mellitus in Chinese Han population[J]. Diabetol Metab Syndr, 2014, 6:107. [37]Shokouhi S, Haghani K, Borji P, et al. Association between PGC-1alpha gene polymorphisms and type 2 diabetes risk:a case-control study of an iranian population[J]. Can J Diabetes, 2014, pii:S1499-2671(14)00194-4. [38]Inoue H, Shintani N, Sakurai Y, et al. PACAP inhibits β-cell mass expansion in a mouse model of type II diabetes:persistent suppressive effects on islet density[J]. Front Endocrinol(Lausanne), 2013, 4:27. [39]Subramanian SL, Hull RL, Zraika S, et al. cJUN N-terminal kinase(JNK)activation mediates islet amyloid-induced beta cell apoptosis in cultured human islet amyloid polypeptide transgenic mouse islets[J]. Diabetologia, 2012, 55(1):166-174. [40]Iancu AD, St?varu C. Double transgenic mice--a suitable model for studying oxidative stress in type 1 diabetes mellitus[J]. Roum Arch Microbiol Immunol, 2012, 71(4):201-220. [41]Morgan MA, Muller PS, Mould A, et al. The nonconventional MHC class II molecule DM governs diabetes susceptibility in NOD mice[J]. PLoS One, 2013, 8(2):e56738. [42]何君, 韩瑞红, 邓巍, 等. 表达人TCRα转基因小鼠1型糖尿病模型的建立及其免疫机制的初步研究[J]. 中国实验动物学报, 2013, 21(5):82-85. [43]Assmann TS, Brondani Lde A, Bauer AC, et al. Polymorphisms in the TLR3 gene are associated with risk for type 1 diabetes mellitus[J]. Eur J Endocrinol, 2014, 170(4):519-527. [44]Li YY, Gao W, Pang SS, et al. TAP1 I333V gene polymorphism and type 1 diabetes mellitus:a meta-analysis of 2248 cases[J]. J Cell Mol Med, 2014, 18(5):929-937. [45]Wang G, Zhang Q, Xu N, et al. Associations between two polymorphisms(FokI and BsmI)of vitamin D receptor gene and type 1 diabetes mellitus in Asian population:a meta-analysis[J]. PLoS One, 2014, 9(3):e89325. [46]Salem HH, Trojanowski B, Fiedler K, et al. Long-term IKK2/NF-κB signaling in pancreatic β-cells induces immune-mediated diabetes[J]. Diabetes, 2014, 63(3):960-975. [47]Feng ZC, Riopel M, Li J, et al. Downregulation of Fas activity rescues early onset of diabetes in c-Kit(Wv/+)mice[J]. Am J Physiol Endocrinol Metab, 2013, 304(6):E557-565. [48]Blüher M, Kl?ting N, Wueest S, et al. Fas and FasL expression in human adipose tissue is related to obesity, insulin resistance, and type 2 diabetes[J]. J Clin Endocrinol Metab, 2014, 99:36-44. [49]苗宏生, 惠国桢. 小剂量链脲霉素(STZ)诱导hFasL转基因小鼠发生糖尿病的研究[J]. 实用临床医药杂志, 2004, 8(2):44-46. [50]宋媛, 徐少勇, 周洁, 等. 高表达胰岛素反应性天然自身抗体转基因小鼠糖耐量分析[J]. 现代生物医学进展, 2013, 13(9):1627-1630. [51] 赖巧红. SUMO化修饰对胰岛β细胞凋亡的调控其机制研究[D]. 武汉:华中科技大学, 2013. [52]朱金改. PID1脂肪组织特异性转基因小鼠的构建及表型分析[D]. 南京:南京医科大学, 2012. [53]Hart AW, Mella S, Mendrychowski J, et al. The developmental regulator Pax6 is essential for maintenance of islet cell function in the adult mouse pancreas[J]. PLoS One, 2013, 8(1):e54173. [54]Lin MH, Chou FC, Yeh LT, et al. B lymphocyte-induced maturation protein 1(BLIMP-1)attenuates autoimmune diabetes in NOD mice by suppressing Th1 and Th17 cells[J]. Diabetologia, 2013, 56(1):136-146. [55]Tsai S, Serra P, Clemente-Casares X, et al. Antidiabetogenic MHC class II promotes the differentiation of MHC-promiscuous autoreactive T cells into FOXP3+ regulatory T cells[J]. Proc Natl Acad Sci USA, 2013, 110(9):3471-3476. [56]Jin Y, Purohit S, Chen X, et al. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic(NOD)mice via up-regulation of CD4+ CD25+ regulatory T cells[J]. Biochem Biophys Res Commun, 2012, 424(4):669-674. [57]Phillips MI, Tang Y. Genetic modification of stem cells for cardiac, diabetic, and hemophilia transplantation therapies[J]. Prog Mol Biol Transl Sci, 2012, 111:285-304. [58]Mojibian M, Lam AW, Fujita Y, et al. Insulin-producing intestinal K cells protect NOD mice from autoimmune diabetes[J]. Gastroenterology, 2014, pii:S0016-5085. [59]Nagaraju S, Bottino R, Wijkstrom M, et al. Islet xenotransplantation from genetically engineered pigs[J]. Curr Opin Organ Transplant, 2013, 18(6):695-702. [60]Wu H, Yoon AR, Li F, et al. RGD peptide-modified adenovirus expressing hepatocyte growth factor and X-linked inhibitor of apoptosis improves islet transplantation[J]. J Gene Med, 2011, 13(12):658-669. [61]Codd JD, Salisbury JR, Packham G, et al. A20 RNA expression is associated with undifferentiated nasopharyngeal carcinoma and poorly differentiated head and neck squamous cell carcinoma[J]. J Pathol, 1999, 187:549-555. [62]Lee EG, Boone DL, Chai S, et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice[J]. Science, 2000, 289:2350-2354. [63]Opipari AW Jr, Hu HM, Yabkowitz R, et al. The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity[J]. J Biol Chem, 1992, 267:12424-12427. [64]Janicke RU, Lee FH, Porter AG. Nuclear c-Myc plays an important role in the cytotoxicity of tumor necrosis factor a in tumor cells[J]. Mol Cell Biol, 1994, 14:5661-5670. [65]支涤静. A20转基因抑制胰岛移植排斥反应作用的初步探讨[D].上海:复旦大学, 2011. [66]Cassese A, Raciti GA, Fiory F, et al. Adenoviral gene transfer of PLD1-D4 enhances insulin sensitivity in mice by disrupting phospholipase D1 interaction with PED/PEA-15[J]. PLoS One, 2013, 8(4):e60555. [67] Atkinson BJ, Griesel BA, King CD, et al.Moderate GLUT4 overex-pression improves insulin sensitivity and fasting triglyceridemia in high-fat diet-fed transgenic mice[J]. Diabetes, 2013, 62(7):2249-2258. [68]Liu BH, Lin YY, Wang YC, et al. Porcine adiponectin receptor 1 transgene resists high-fat/sucrose diet-induced weight gain, hepatosteatosis and insulin resistance in mice[J]. Exp Anim, 2013, 62(4):347-360. [69]Meng ZX, Li S, Wang L, et al. Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation[J]. Nat Med, 2013, 19(5):640-645. [70]Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV:progress and challenges[J]. Nat Rev Genet, 2011, 12:341-355. [71]Maguire AM, High KA, Auricchio A, et al. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis:a phase 1 dose-escalation trial[J]. Lancet, 2009, 374:1597-1605. [72]Nathwani AC, Tuddenham EG, Rangarajan S, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B[J]. N Engl J Med, 2011, 365:2357-2365. [73]Callejas D, Mann CJ, Ayuso E, et al. Treatment of diabetes and long-term survival after insulin and glucokinase gene therapy[J]. Diabetes, 2013, 62(5):1718-1729. [74]Chen S, Shimoda M, Chen J, et al. Ectopic transgenic expression of NKX2.2 induces differentiation of adult pancreatic progenitors and mediates islet regeneration[J]. Cell Cycle, 2012, 11:1544-1153. [75]Bone RN, Icyuz M, Zhang Y, et al. Gene transfer of active Akt1 by an infectivity-enhanced adenovirus impacts β-cell survival and proliferation differentially in vitro and in vivo[J]. Islets, 2012, 4(6):366-378. [76] Hakonen E, Ustinov J, Eizirik DL, et al. In vivo activation of the PI3K-Akt pathway in mouse beta cells by the EGFR mutation L858R protects against diabetes[J]. Diabetologia, 2014, 57:970-979. [77]姚艳丽, 冯凭. 胰高血糖素样肽-1与Ⅰ型糖尿病治疗[J]. 生命的化学, 2005, 25(4):316-317. [78]Giorgino F, Laviola L, Leonardini A, et al. GLP-1:a new approach for type 2 diabetes therapy[J]. Diabetes Research and Clinical Practice, 2006, 74:S152-S155. [79]Choi S, Oh S, Lee M, et al. Glucagon-like peptide-1 plasmid construction and delivery for the treatment of type 2 diabetes[J]. Mol Ther, 2005, 12(5):885-891. [80]Mohamed R, Jayakumar C, Ranganathan PV, et al. Kidney proximal tubular epithelial-specific overexpression of netrin-1 suppresses inflammation and albuminuria through suppression of COX-2-mediated PGE2 production in streptozotocin-induced diabetic mice[J]. Am J Pathol, 2012, 181(6):1991-2002. [81]Wiechert S, El-Armouche A, Rau T, et al. 24-h Langendorff-perfused neonatal rat heart used to study the impact of adenoviral gene transfer[J]. Am J Physiol Heart Circ Physiol, 2003, 285(2):H907- H914. [82]Yamada Y, Tabata M, Yasuzaki Y, et al. A nanocarrier system for the delivery of nucleic acids targeted to a pancreatic beta cell line[J]. Biomaterials, 2014, 35(24):6430-6438. [83]Tomita N, Higaki J, Ogihara T, et al. A novel gene-transfer technique mediated by HVJ(Sendai virus), nuclear protein, and liposomes[J]. Cancer Detect Prev, 1994, 18(6):485-491. [84]Takahashi R, Ishihara H, Takahashi K, et al. Efficient and controlled gene expression in mouse pancreatic islets by arterial delivery of tetracycline-inducible adenoviral vectors[J]. J Mol Endocrinol, 2007, 38(1-2):127-136. [85]Londrigan SL, Brady JL, Sutherland RM, et al. Evaluation of promoters for driving efficient transgene expression in neonatal porcine islets[J]. Xenotransplantation, 2007, 14(2):119-125. [86]He CX, Shi D, Wu WJ, et al. Insulin expression in livers of diabetic mice mediated by hydrodynamics-based administration[J]. World J Gastroenterol, 2004, 10(4):567-572. [87]Lu Z, Shen SX, Zhi DJ, et al. Protective effect of cotransfection of A20 and HO-1 gene against the apoptosis induced by TNF-α in rat islets in vitro[J]. Zhonghua Er Ke Za Zhi, 2013, 51:420-425. [88] McCabe C, O’Brien T. The rational design of beta cell cytoprotective gene transfer strategies:targeting deleterious iNOS expression[J]. Mol Biotechnol, 2007, 37(1):38-47. [89]Giannoukakis N, Trucco M. A 2015 reality check on cellular therapies based on stem cells and their insulin-producing surrogates[J]. Pediatr Diabetes, 2015, doi:10.1111/pedi.12259. [90]Lin HP, Chan TM, Fu RH, et al. Applicability of adipose-derived stem cells in type 1 diabetes mellitus[J]. Cell Transplant, 2015, 24(3):521-532. [91] Raikwar SP, Kim EM, et al. Human iPS cell-derived insulin produ-cing cells form vascularized organoids under the kidney capsules of diabetic mice[J]. PLoS One, 2015, 10(1):e0116582. [92]Dave S. Mesenchymal stem cells derived in vitro transdifferentiated insulin-producing cells:A new approach to treat type 1 diabetes[J]. Adv Biomed Res, 2014, 3:266. [93]Calafiore R, Montanucci P, Basta G. Stem cells for pancreatic β-cell replacement in diabetes mellitus:actual perspectives[J]. Curr Opin Organ Transplant, 2014, 19(2):162-168. [94]Kong D, Zhuang X, Wang D, et al. Umbilical cord mesenchymal stem cell transfusion ameliorated hyperglycemia in patients with type 2 diabetes mellitus[J]. Clin Lab, 2014, 60:1969-1976. [95] Takemoto N, Konagaya S, Kuwabara R, et al. Coaggregates of regulatory T cells and islet cells allow long-term graft survival in liver without immunosuppression[J]. Transplantation, 2015, 95(5):942-947. [96] Mitsui M, Nishikawa M, Zang L, et al. Effect of the content of unmethylated CpG dinucleotides in plasmid DNA on the sustainability of transgene expression[J]. J Gene Med, 2009, 11(5):435-443. [97]Tan IK, Mackin L, Wang N, et al. A recombination hotspot leads to sequence variability within a novel gene(AK005651)and contributes to type 1 diabetes susceptibility[J]. Genome Res, 2010, 20(12):1629-1638. [98]Qiu YH, Deng FY, Li MJ, et al. Identification of novel risk genes associated with type 1 diabetes mellitus using a genome-wide gene-based association analysis[J]. J Diabetes Investig, 2014, 5(6):649-656. [99]Bergholdt R, Brorsson C, Palleja A, et al. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression[J]. Diabetes, 2012, 61(4):954-962. [100] Butter F, Davison L, Viturawong T, et al. Proteome-wide analysis of disease-associated SNPs that show allele-specific transcription factor binding[J]. PLoS Genet, 2012, 8(9):e1002982. [101] Shu XO, Long J, Cai Q, et al. Identification of new genetic risk variants for type 2 diabetes[J]. PLoS Genet, 2010, 6(9):e1001127. [102] Park MH, Kwak SH, Kim KJ, et al. Identification of a genetic locus on chromosome 4q34-35 for type 2 diabetes with overweight[J]. Exp Mol Med, 2013, 45:e7. [103] Babaya N, Fujisawa T, Nojima K, et al. Direct evidence for susceptibility genes for type 2 diabetes on mouse chromosomes 11 and 14[J]. Diabetologia, 2010, 53(7):1362-1371. [104] Raza ST, Abbas S, Ahmed F, et al. Association of MTHFR and PPARγ2 gene polymorphisms in relation to type 2 diabetes mellitus cases among north Indian population[J]. Gene, 2012, 511(2):375-379. |
[1] | XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.) [J]. Biotechnology Bulletin, 2023, 39(9): 27-39. |
[2] | YUAN Ye, ZHOU Jia, QU Jian-hang, ZHANG Bo-yuan, LUO Yu, LI Hai-feng. Screening of an Efficient Denitrifying Phosphorus-accumulating Bacterium and Its Denitrification and Phosphorus Removal [J]. Biotechnology Bulletin, 2023, 39(7): 266-276. |
[3] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[4] | ZHANG Yu-hong, DONG Xian-bo, LIU Xiang-yu, XU Jia-qi, XU Zi-ling. Isolation of a Novel Heterotrophic Nitrification-Aerobic Denitrification Bacterium Paracoccus sp. QD-19 and Its Characterization of Removing Nitrogen [J]. Biotechnology Bulletin, 2023, 39(3): 301-310. |
[5] | LI Jia-le, LIN Sheng-hao, XU Wen-tao. Construction of an Ultra-sensitive Colorimetric Biosensor for Insect Resistance Genes Based on Loop-mediated Isothermal Amplification [J]. Biotechnology Bulletin, 2022, 38(8): 69-76. |
[6] | LIU Na, JIAO Jing-lin, RAO Zheng-hua. Research Progress in the Detection Methods of Short Chain Fatty Acids in Animal Samples [J]. Biotechnology Bulletin, 2022, 38(8): 84-91. |
[7] | WANG Ya-jun, SI Yun-mei. Screening and Degradation Characteristics of a CP-7 Strain of Dephosphorization Bacteria [J]. Biotechnology Bulletin, 2022, 38(7): 258-268. |
[8] | ZHANG Ya-han, ZHU Li-xia, HU Jing, ZHU Ya-jing, ZHANG Xue-jing, CAO Ye-zhong. Opportunities and Challenges of Glyphosate in the Application of Biotechnology Breeding in China [J]. Biotechnology Bulletin, 2022, 38(11): 1-9. |
[9] | ZHAI Xu-hang, LI Xia, YUAN Ying-jin. Research Progress of Lignocellulose Pretreatment and Valorization Method [J]. Biotechnology Bulletin, 2021, 37(3): 162-174. |
[10] | SHI Xin-yue, SHANG Xiao-yao, ZHOU Ling-fang, ZHANG Tie-jun, CHAO Yue-hui. Cloning and Transformation of MsAP2 Gene in Medicago sativa [J]. Biotechnology Bulletin, 2021, 37(12): 13-21. |
[11] | WANG Jin-peng, LUORENG Zhuo-ma, WANG Xing-ping, YANG Jian, JIA Li, MA Yun, WEI Da-wei. Research Progress in Treatment and Anti-inflammatory Molecular Mechanism of Cow Mastitis [J]. Biotechnology Bulletin, 2021, 37(12): 212-219. |
[12] | ZHANG Li-xing, WANG Li-na, KANG Guang-bo, HUANG He. Application and Advances of Multi-omics Analysis in Inflammatory Bowel Disease [J]. Biotechnology Bulletin, 2021, 37(1): 155-167. |
[13] | YANG Shi-quan, PENG Dan, FEI Wen-jie, YANG Feng, QU Gao-yi, TANG Wei-wei, OU Jian-ping, DENG Xiang-wen, ZHOU Bo. Cloning and Expression of ClKptA/Tpt1 Gene from Cunninghamia lanceolata(Lamb.)Hook [J]. Biotechnology Bulletin, 2020, 36(8): 15-22. |
[14] | SUN Kai, CHEN Zheng-jie, WANG Deng-yang, SHU Ru-yu, WU Ji, WEI Fan. Removal of Bisphenol A in Wastewater by Immobilized Laccase [J]. Biotechnology Bulletin, 2020, 36(12): 188-198. |
[15] | LIU Chang-rong, ZHANG Feng-li, LI Zhi-yong. Immobilization of Marine Urease and Its Utilization in the Treatment of Urea Wastewater [J]. Biotechnology Bulletin, 2019, 35(9): 75-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||