[1] Winter SR, Ohlrogge AJ. Leaf angle, Leaf area, and Corn(Zea mays L.)yield[J]. Agron J, 1973, 65:395-397. [2] 刘振业, 刘贞琦.光合作用的遗传与育种[M]. 贵阳:过州人民出版社, 1984:160-249. [3] 杨建昌.水稻产量源库关系的研究[J].江苏农学院学报, 1993, 14:47-53. [4] 王忠孝, 高学曾, 许金芳, 等.关于玉米籽粒败育的研究[J].中国农业科学, 1986(6):36-40. [5] 张秀梅, 任和平, 杨铁钊.玉米果穗顶部籽粒败育发生的时间与籽粒糖含量的关系[J].河南农学院学报, 1984(3):15-24. [6] 王余龙, 蔡建中.水稻籽粒受容活性及其控制途径[J].江苏农学院学报, 1991, 12(2):17-23. [7] 郑丕尧.玉米不同叶位叶解剖结构的研究II.不同叶位叶片维管束系统的观察[J].中国农业科学, 1986(6):41-47. [8] Jaeger KE, Wigge P. FT protein acts as a long-range signal in Arabi-dopsis[J]. Curr Biol, 2007, 17(12):1050-1054. [9] Helariutta, Y, Fukaki H, Dikker J, et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling[J]. Cell, 2000, 101(5):555-567. [10] Cui H, Kong D, Liu X, Hao Y. SCARECROW, SCR-LIKE 23 and SHORT-ROOT control bundle sheath cell fate and function in Arabidopsis thaliana[J]. Plant J, 2014, 78(2):319-327. [11] Slewinski TL, Anderson AA, Zhang C, Turgeon R. Scarecrow plays a role in establishing Kranz anatomy in maize leaves[J]. Plant Cell Physiol, 2012, 53:2030-2037. [12] Abraham P, Adams R, Giannone RJ, et al. Defining the boundaries and characterizing the landscape of functional genome expression in vascular tissues of Populus using shotgun proteomics[J]. J Proteome Res, 2012, 11(1):449-460. [13] Dafoe NJ, Zamani A, Ekramoddoullah AKM, et al. Analysis of the poplar phloem proteome and its response to leaf wounding[J]. J Proteome Res 2009, 8:2341-50. [14] Whitehill JG, Popova-Butler A, Green K, et al. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer[J]. PLoS One 2011, 6:e24863. [15] Cho WK, Chen XY, Rim Y, et al. Extended latex proteome analysis deciphers additional roles of the lettuce laticifer[J]. Plant Biotechnology Reports, 2010, 4(4):311-319. [16] Aki T, Shigyo M, Nakano R, et al. Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice[J]. Plant Cell Physiol, 2008, 49:767-790. [17] Yoo SC, Chen C, Rojas M, et al. Phloem long-distance delivery of FLOWERING LOCUS T(FT)to the apex[J]. Plant J, 2013, 75 (3):456-468. [18] Cho WK, Chen XY, Rim Y, et al. Proteome study of the phloem sap of pumpkin using multidimensional protein identification technology[J]. J Plant Physiol, 2010, 167(10):771-778. [19] Lin MK, Lee YJ, Lough TJ, et al. Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function[J]. Mol Cell Proteomics, 2009, 8:343-356. [20] Li C, Gu M, Shi N, et al. Mobile FT mRNA contributes to the systemic florigen signalling in floral induction[J]. Sci Rep, 2011, 1(73):1-7. [21] Sasaki T, Chino M, Hayashi H, Fujiwara T. Detection of several mRNA species in rice phloem sap[J]. Plant Cell Physiol, 1998, 39:895-897. [22] Hand ML, Koltunow AM. The genetic control of apomixis:asexual seed formation[J]. Genetics, 2014, 197(2):441-450. [23] Forster BP, Heberle-Bors E, Kasha KJ, Touraev A. The resurgence of haploids in higher plants[J]. Trends Plant Sci, 2007, 12:368-375. [24] Wijnker E, van Dun K, de Snoo CB, et al. Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant[J]. Nat Genet, 2012, 44(4):467-470. [25] Dirks R, van Dun K, de Snoo CB, et al. Reverse breeding:a novel breeding approach based on engineered meiosis[J]. Plant Biotechnol J, 2009, 7(9):837-845. [26] Anai T. Potential of a mutant-based reverse genetic approach for functional genomics and molecular breeding in soybean[J]. Breed Sci, 2012, 61:462-467. [27] Wijnker E, Deurhof L, van de Belt J, et al. Hybrid recreation by reverse breeding in Arabidopsis thaliana[J]. Nat Protoc, 2014, 9(4):761-772. [28] Kurzbauer MT, Uanschou C, Chen D, Schlogelhofer P. The recombinases DMC1 and RAD51 are functionally and spatially separated during meiosis in Arabidopsis[J]. Plant Cell, 2012, 24(5):2058-2070. [29] Sanei M, Pickering R, Kumke K, et al. Loss of centromeric histone H3(CENH3)from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids[J]. Proc Natl Acad Sci USA, 2011, 108(33):E498-505. [30] Zhang WN, Kollwing G, Stecyk E, et al. Graft-transmissible movement of inverted-repeat-induced siRNA signals into flowers[J]. Plant Journal, 2014, 80(1):106-121. [31] McGarry RC, Kragler F. Phloem-mobile signals affecting flowers:applications for crop breeding[J]. Trends Plant Sci, 2013, 18:198-206. |