[1]Jane BL, John N. Phenazine natural products:biosynthesis, synthetic analogues, and biological aActivity[J]. Chem. Rev, 2004, 104:1663-1685. [2]Chin-A-Woeng TFC, Thomas-Oates JE, Lugtenberg BJJ, et al. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains[J]. Mol Plant-Microbe Interact, 2001, 14:1006-1015. [3]Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, et al. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot[J]. Mol Plant-Microbe Interact, 2000, 13:1340-1345. [4]许煜泉. 绿色微生物源抗菌剂申嗪霉素(M18)[J]. 精细与专用化学品, 2004, 12(20):8-17. [5]沈丽娟. 高效、广谱、安全生物杀菌剂——申嗪霉素[J]. 世界农药, 2011, 33(3):58. [6]申慧峰. 在铜绿假单胞菌根际株M18中高效转化吩嗪-1-羧酸为吩嗪-1-甲酰胺[D]. 上海:上海交通大学, 2012. [7]Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, et al. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici[J]. Mol Plant-Microbe Interact, 1998, 11:1069-1077. [8]Shanmugaiah V, Mathivanan N, Varghese B. Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212[J]. Journal of Applied Microbiology, 2010, 108(2):703-711. [9]Mavrodi DV, Bonsall RF, Delaney SM, et al. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1[J]. Journal of Bacteriology, 2001, 183(21):6454-6465. [10]Kumar RS, Ayyadurai N, Pandiaraja P, et al. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits[J]. Journal of Applied Microbiology, 2005, 98(1):145-154. [11]Naik PR, Sakthivel N. Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential[J]. Research in Microbiology, 2006, 157(6):538-546. [12]王光耀. 高产率生产L-乳酸拟干酪乳杆菌的高通量选育方法建立及应用[D]. 上海:华东理工大学, 2013. [13]施跃峰, 桑金隆, 竺莉红, 等. 等离子体处理选育之江菌素产生菌[J]. 核农学报, 2002, 16(4):208-211. [14]张平原. 一株高产吩嗪-1-甲酰胺绿针假单胞菌HT66的鉴定与改造[D]. 上海:上海交通大学, 2014. [15]金丽华, 方明月, 张翀, 等. 常压室温等离子体快速诱变产油酵母的条件及其突变株的特性[J]. 生物工程学报, 2011, 27(3):461-467. [16]蔡友华, 李文锋, 卢伟宁, 等. 新型常压室温等离子体(ARTP)快速诱变高产苏氨酸的突变株[J]. 现代食品科技, 2013, 29(8):1888-1892. [17]Shtark O, Shaposhnikov AI, Kravchenko LV. The production of antifungal metabolites by Pseudomonas chlororaphis grown on different nutrient sources[J]. Mikrobiologiia, 2003, 72:645-650. [18]陈鸿锐, 陈碧瑶, 陈玲玲. 吩嗪-1-羧酸发酵培养基配方的初步确定[J]. 生物技术世界, 2012(3):21. [19]van Rij ET, Wesselink M, Chin-A-Woeng TFC, et al. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391[J]. MPMI, 2004, 17(5):557-566. [20]李雅乾. 假单胞菌株M18吩嗪合成基因簇表达调控及其产物发酵优化研究[D]. 上海:上海交通大学, 2009. [21]Wang Y, Wilks JC, Danhorn T, et al. Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition[J]. J Bacteriol, 2011, 193(14):3606-3617. [22]Du X, Li Y, Zhou W, et al. Phenazine-1-carboxylic acid production in a chromosomally non-scar triple-deleted mutant Pseudomonas aeruginosa using statistical experimental designs to optimize yield[J]. Appl Microbiol Biotechnol, 2013, 97:7767-7778. |