Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (10): 66-76.doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.009
• Orginal Article • Previous Articles Next Articles
SUN Shu-hao, YU Di-qiu
Received:
2016-08-30
Online:
2016-10-25
Published:
2016-10-12
SUN Shu-hao, YU Di-qiu. WRKY Transcription Factors in Regulation of Stress Response in Plant[J]. Biotechnology Bulletin, 2016, 32(10): 66-76.
[1] Aditya B, Aryadeep R. WRKY Proteins:Signaling and regulation of expression during abiotic stress responses[J]. Scientific World Journal Volume, 2015:807560. [2] Gray SB, Brady SM. Plant developmental responses to climate change[J]. Dev Biol, 2016:S0012-1606(16)30264-0. [3] Oracz K, Karpinski S. Phytohormones signaling pathways and ROS involvement in seed germination[J]. Plant Sci, 2016, 7:864. [4] Pieterse CM, Van der Does D, Zamioudis C, et al. Hormonal modulation of plant immunity[J]. Annu Rev Cell Dev Biol, 2012, 28:489-521. [5] Schluttenhofer C, Pattanaik S, Patra B, et al. Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling[J]. BMC Genomics, 2014, 15:502. [6] Schuttenhofer C, Yuan L. Regulation of specialized metabolism by WRKY transcription factors[J]. Plant Physiology, 2015, 167(2):295-306. [7] Ulker B, Somssich IE. WRKY transcription factors:from DNA binding towards biological function[J]. Current Opinion in Plant Biology, 2004, 7(5):491-498. [8] Tripathi P, Rabara RC, et al. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants[J]. Planta, 2014, 239:255-266. [9] Wu X, Shiroto Y, Kishitani S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Rep, 2009, 28(1):21-30. [10] Ren X, Chen Z, Liu Y, et al. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis[J]. Plant J, 2010, 63(3):417-29. [11] Zou C, Jiang W, Yu D. Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis[J]. J Exp Bot, 2010, 61(14):3901-3914. [12] Chen L, Zhang L, Yu D. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis[J]. Mol Plant Microbe Interact, 2010, 23(5):558-565. [13] Rinerson CI, Rabara RC, Tripathi P, et al. The evolution of WRKY transcription factors[J]. BMC Plant Biology, 2015, 15:66. [14] Eulgem T, Somssich IE. Networks of WRKY transcription factors in defense signaling[J]. Curr Opin Plant Biol, 2007, 10(4):366-371. [15] Rushton PJ, Somssich IE, Ringler P, et al. WRKY transcription factors[J]. Trends In Plant Sci, 2010, 15(5):247-258. [16] Grunewald W, Karimi M, Wieczorek K, et al. A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes[J]. Plant Physiol, 2008, 148(1):358-368. [17] Skibbe M, Qu N, Galis I, et al. Induced plant defenses in the natural environment:Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory[J]. Plant Cell, 2008, 20(7):1984-2000. [18] Rushton DL, Tripathi P, Rabara RC, et al. WRKY transcription factors:key components in abscisic acid signaling[J]. Plant Biotechnology Journal, 2012, 10:2-11. [19] Narusaka M, Toyoda K, Shiraishi T, et al. Leucine zipper motif in RRS1 is crucial for the regulation of Arabidopsis dual resistance protein complex RPS4/RRS1[J]. Sci Rep, 2016, 6:18702. [20] Ling J, Jiang W, Zhang Y, et al. Genome-wide analysis of WRKY gene family in Cucumis sativus[J]. BMC Genomics, 2011, 12:471. [21] Xiong W, Xu X, Zhang L, et al. Genome-wide analysis of the WRKY gene family in physic nut(Jatropha curcas L. )[J]. Gene, 2013, 524(2):124-132. [22] Guo C, Guo R, Xu X, et al. Evolution and expression analysis of the grape(Vitis vinifera L. )WRKY gene family[J]. J Exp Bot, 2014, 65(6):1513-1528. [23] Eulgem T, Rushton PJ, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci, 2000, 5(5):199-206. [24] Huang X, Li K, Xu X, et al. Genome-wide analysis of WRKY transcription factors in white pear(Pyrus bretschneideri)reveals evolution and patterns under drought stress[J]. BMC Genomics, 2015, 16(1):1104. [25] He H, Dong Q, Shao Y, et al. Genome-wide survey and characteri-zation of the WRKY gene family in Populus trichocarpa[J]. Plant Cell Rep, 2012, 31(7):1199-1217. [26] Muthamilarasan M, Bonthala VS, Khandelwal R, et al. Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling[J]. Front Plant Sci, 2015, 6:910. [27] Ross CA, Liu Y, Shen QJ. The WRKY gene family in rice(Oryza sativa)[J]. J Integr Plant Biol, 2007, 49:827-842. [28] Zou Z, Yang L, Wang D, et al. Gene structures, evolution and transcriptional profiling of the WRKY gene family in Castor Bean(Ricinus communis L. )[J]. PLoS One, 2016, 11(2):e0148243. [29] Ulker B, Somssich IE. WRKY transcription factors:from DNA binding towards biological function[J]. Curr Opin Plant Biol, 2004, 7(5):491-498. [30] Gao QM, Venugopal S, Navarre D, Kachroo A. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins[J]. Plant Physiol, 2011, 155(1):464-476. [31] Journot-Catalino N, Somssich IE, Roby D, Kroj T. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana[J]. Plant Cell, 2006, 18(11):3289-3302. [32] Verk MC, Bol JF, Linthorst HJ. WRKY transcription factors involved in activation of SA biosynthesis genes[J]. BMC Plant Biol, 2011, 11:89. [33] Schluttenhofer C, Pattanaik S, Patra B, et al. Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling[J]. BMC Genomics, 2014, 15:502. [34] Gong L, Zhang H, Gan X. Transcriptome profiling of the potato(Solanum tuberosum L. )Plant under drought stress and water-stimulus conditions[J]. PLoS One, 2015, 10(5):e0128041. [35] Jiang Y, Guo L, Liu R, et al. Overexpression of poplar PtrWRKY89 in transgenic Arabidopsis leads to a reduction of disease resistance by regulating defense related genes in salicylate- and jasmonate dependent signaling[J]. PLoS One, 2016, 11(3):e0149137. [36] Jiang YZ, Duan YJ, Yin J, et al. Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses[J]. J Exp Bot, 2014, 65(22):6629-6644. [37] Chen C, Chen Z. Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco[J]. Plant Mol Biol, 2000, 42(2):387-396. [38] Chen LG, Zhang LP, Li DB, et al. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis[J]. Proc Natl Acad Sci USA, 2013, 110:E1963-1971. [39] Ye YJ, Xiao YY, Han YC, et al. Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes[J]. Sci Rep, 2016, 6:23632. [40] Xiu H, Nuruzzaman M, Guo X, et al. Molecular cloning and expression analysis of eight PgWRKY genes in Panax ginseng responsive to salt and hormones[J]. Int J Mol Sci, 2016, 17(3):319. [41] Liu X, Bai X, Wang X, Chu C. OsWRKY71, a rice transcription factor, is involved in rice defense response[J]. Plant Physiol, 2007, 164:969-979. [42] Zhang J, Peng Y, Guo Z. Constitutive expression of pathogen- inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants[J]. Cell Res, 2008, 18(4):508-521. [43] Tao Z, Kou Y, Liu H, et al. OsWRKY45 alleles play different roles in abscisic acid signaling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J]. Exp Bot, 2011, 62(14):4863-4874. [44] Chen L, Zhang L, Yu D. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis[J]. Mol Plant Micro, 2011, 23:558-565. [45] Zheng Z, Qamar SA, Chen Z, Mengiste T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens[J]. Plant J, 2006, 48(4):592-605. [46] Zheng Z, Mosher SL, Fan B, et al. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringe[J]. BMC Plant Biol, 2007, 7:2. [47] Jain S, Chittem K, Brueggeman R, et al. Comparative transcriptome analysis of resistant and susceptible common bean genotypes in response to soybean cyst nematode infection[J]. PLoS One, 2016, 11(7):. [48] Fan Q, Song A, Xin J, et al. CmWRKY15 facilitates Alternaria tenuissima infection of chrysanthemum[J]. PLoS One, 2015, 10:e0143349. [49] Li P, Song A, Gao C, et al. The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance[J]. Plant Physiology and Biochemistry, 2015, 95:26-34. [50] Joshi RK, Megha S, Rahman MH, et al. A global study of transcriptome dynamics in canola(Brassica napus L. )responsive to Sclerotinia sclerotiorum infection using RNA-Seq[J]. Gene, 2016, 590(1):57-67. [51] Yang B, Jiang Y, Rahman MH, et al. Identification and expression analysis of WRKY transcription factor genes in canola(Brassica napus L. )in response to fungal pathogens and hormone treatments[J]. BMC Plant Biol, 2009, 9:68. [52] Wang Z, Fang H, Chen Y, et al. Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum[J]. Mol Plant Pathol, 2014, 15(7):677-689. [53] Wang Z, Mao H, Dong C, et al. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape[J]. Mol Plant Microbe In, 2009, 22(3):235-244. [54] Chen XT, Liu T, Lin G, et al. Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum[J]. Plant Cell Rep, 2013, 32(10):1589-1599. [55] Jiang YZ, Duan YJ, Yin J, et al. Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response tobiotic and abiotic stresses[J]. Exp Bot, 2014, 65(22):6629-6644. [56] Li J, Zhu J, Hull JJ, et al. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci(whitefly)[J]. Plant Biotechnol, 2016, 14(10):1956-1975. [57] Hu L, Ye M, Li R, Lou Y. OsWRKY53, a versatile switch in regulating herbivore-induced defense responses in rice[J]. Plant Signal Behav, 2016, 11(4):e1169357. [58] Satapathy L, Singh D, Ranjan P, et al. Transcriptome-wide analysis of WRKY transcription factors in wheat and their leaf rust responsive expression profiling[J]. Molecular Genetics Genomics, 2014, 289:1289-1306. [59] Jaffar MA, Song A, Faheem M, et al. Involvement of CmWRKY10 in drought tolerance of Chrysanthemum through the ABA-signaling pathway[J]. Int J Mol Sci, 2016, 17(5):E693. [60] Song A, Li P, Jiang J, et al. Phylogenetic and transcription analysis of chrysanthemum WRKY transcription factors[J]. International Journal Molecular Science, 2014, 15:14442-14455. [61] Fan Q, Song A, Jiang J, et al. CmWRKY1 enhances the dehydration tolerance of Chrysanthemum through the regulation of ABA-associated genes[J]. PLoS One, 2016, 11(3):e0150572. [62] Li P, Song A, Gao C, et al. Chrysanthemum WRKY gene CmWRK- Y17 negatively regulates salt stress tolerance in transgenic chrysa-nthemum and Arabidopsis plants[J]. Plant Cell Reports, 2015, 34:1365-1378. [63] Ding ZJ, Yan JY, Xu XY, et al. Transcription factor WRKY46 reg-ulates osmotic stress responses and stomatal movement independ-ently in Arabidopsis[J]. Plant J, 2014(1):13-27. [64] Han Y, Zhang X, Wang W, et al. Correction:the suppression of WRKY44 by GIGANTEA-miR172 pathway is involved in drought response of Arabidopsis thaliana[J]. PLoS One, 2015, 10(4):e0124854. [65] Wu X, Shiroto Y, Kishitani S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Rep, 2009, 28(1):21-30. [66] Xiong X, James VA, Zhang H, Altpeter F. Constitutive expression of the barley HvWRKY38 transcription factor enhances drought tol-erance in turf and forage grass(Paspalumnotatum Flugge)[J]. Mol Breed, 2010, 25(3):419-432. [67] Niu CF, Wei W, Zhou QY, et al. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants[J]. Plant Cell Environ, 2012, 35(6):1156-1170. [68] Zhou QY, Tian AG, Zou HF, et al. Soybean WRKY-type transcrip-tion actor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic tresses in transgenic Arabid-opsis plants[J]. Plant Biotechnology Journal, 2008, 6:486-503. [69] Chen W, Yao Q, Patil GB, et al. Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-Seq[J]. Front Plant Sci, 2016, 7:1044. [70] Ma T, Li M, Zhao A, et al. LcWRKY5:an unknown function gene from sheep grass improves drought tolerance in transgenic Arabidopsis[J]. Plant Cell Reports, 2014, 33:1507-1518. [71] Sun J, Hu W, Zhou R, et al. The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants[J]. Plant Cell Reports, 2015, 34:23-35. [72] Wang Z, Zhu Y, Wang L, et al. A WRKY transcription factor participates in dehydrationtolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase(BhGolS1)promoter[J]. Planta, 2009, 230:1155-1166. [73] Tripathi P, Rabara RC, Reese RN, et al. A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes[J]. BMC Genomics, 2016, 17:102. [74] Rabara RC, Tripathi P, Reese RN, et al. Tobacco drought stress responses reveal new targets for Solanaceae crop improvement[J]. BMC Genomics, 2015, 16:484. [75] Bonthala VS, Mayes K, Moreton J, et al. Identification of gene mod-ules associated with low temperatures response in bambara ground-nut by network-based analysis[J]. PLoS One, 2016, 11(2):e0148771. [76] Nah G, Lee M, Kim DS, et al. Transcriptome Analysis of Spartina pectinate in Response to Freezing Stress[J]. PLoS One, 2016, 11(3):e0152294. [77] Wang X, Zeng J, Li Y, et al. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances[J]. Front Plant Sci, 2015, 6:615. [78] Jia H, Wang C, Wang F, et al. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana[J]. PLoS One, 2015, 10:e0120646. [79] Xiu H, Nuruzzaman M, Guo Xet A. Molecular cloning and express-ion analysis of eight PgWRKY genes in Panax ginseng responsive to salt and hormones[J]. Int J Mol Sci, 2016, 17(3):319. [80] Wei W, Zhang Y, Han L, et al. A novel WRKY transcriptional factor from THLASPI CAERULESCENS negatively regulates the osmotic stress tolerance of transgenic tobacco[J]. Plant Cell Rep, 2008, 27:795-803. [81] Hemm MR, Herrmann KM, Chapple C. AtMYB4:a transcription factor general in the battle against UV[J]. Trends Plant Sci, 2001, 6(4):135-136. [82] Gao C, Wang Y, Jiang B, et al. A novel vacuolar membrane H + -ATPase c subunit gene(ThVHAc1)from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae[J]. Mol Biol Rep, 2011, 38(2):957-963. [83] Rushton PJ, Somssich IE,Ringler P, et al. WRKY transcription factors[J]. Trends Plant Sci, 2010, 15:247-258. [84] Cheng Y, Zhou Y, Yang Y, et al. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors[J]. PlantPhysiol, 2012, 159(2):810-825. [85] Tosti N, Pasqualini S, Borgogni A, et al. Gene expression profiles of O3-treated Arabidopsis plants[J]. Plant Cell Environ, 2006(9):1686-702. [86] Rizzo M, Bernardi R, Salvini M, et al. Identification of differentially expressed genes induced by ozone stress in sensitive and tolerant poplar hybrids[J]. J Plant Physiol, 2007, 164(7):945-949. [87] Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection[J]. Plant Physiol, 2012, 159(1):266-285. [88] Journot-Catalino N, Somssich IE, Roby D, Kroj T. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana[J]. Plant Cell, 2006(11):3289-302. [89] Zhao H, Lou Y, Sun H. Transcriptome and comparative gene expression analysis of Phyllostachys edulis in response to high light[J]. BMC Plant Biology, 2016, 16:34. [90] Johnson CS, Kolevski B, Smyth DR. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor[J]. Plant Cell, 2002, 14(6):1359-1375. [91] Luo X, Sun X, Liu B, et al. Ectopic expression of a WRKY homolog from Glycine soja alters flowering time in Arabidopsis[J]. PLoS One, 2013, 8(8):e73295. [92] Luo M, Dennis ES, Berger F, et al. MINISEED3(MINI3), a WR-KY family gene, and HAIKU2(IKU2), a leucine-rich repeat(L-RR)KINASE gene, are regulators of seed size in Arabidopsis[J]. Proc Natl Acad Sci USA, 2005, 102(48):17531-17536. [93] Zhang ZL, Xie Z, Zou X. A rice WRKY gene encodes a transcript-ional repressor of the gibberellin signaling pathway in aleurone cells[J]. Plant Physiol, 2004, 134(4):1500-1513. [94] Robatzek S, Somssich IE. Targets of AtWRKY6 regulation during plant senescence and pathogen defense[J]. Genes Dev, 2002, 16(9):1139-1149. [95] Li W, Tian Z, Yu D. WRKY13 acts in stem development in Arabi-dopsis thaliana[J]. Plant Sci, 2015, 236:205-213. [96] Wang H, Avci U, Nakashima J, et al. Mutation of WRKY transcri-ption factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants[J]. Proc Natl Acad Sci USA, 2010, 107(51):22338-22343. [97] Yu Y, Hu R, Wang H, et al. MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering[J]. Plant Sci, 2013, 212:1-9. [98] Li Y, Xin Z, FanY, et al. PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa[J]. Scientific RepoRts, 2016, 6:18643. [99] Arun-Chinnappa KS, McCurdy DW. Identification of candidate transcriptional regulators of epidermal transfer cell development in Vicia faba Cotyledons[J]. Front Plant Sci, 2016, 7:717. [100] Kiseleva, Shcherban AB, Leonova IN, et al. Identification of new heading date determinants in wheat 5B chromosome[J]. BMC Plant Biol, 2016, 16(1):8. [100] Luo X, Sun X, Liu B, et al. Ectopic expression of a WRKY homolog from Glycine soja alters flowering time in Arabidopsis[J]. PLoS One, 2013, 8:e73295. [102] Yu Y, Hu R, Wang H, et al. MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering[J]. Plant Sci, 2013, 212:1-9. [103] Kim J, Yang J, Yang R, et al. Transcriptome analysis of soybean leaf abscission identifies transcriptional regulators of organ polarity and cell fate[J]. Plant Sci, 2016, 7:125. [104] Jiang Y, Deyholos MK. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses[J]. Plant Molecular Biology, 2009, 69:91-105. [105] Shang Y, Yan L, Liu ZQ, et al. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J]. Plant Cell, 2010, 22:1909-1935. [106] Chen H, Lai Z, Shi J, et al. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress[J]. BMC Plant Biol, 2010, 10:281. [107] Ding ZJ, Yan JY, Li GX, et al. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA[J]. Plant J, 2014, 79:810-823. [108] Cai H, Yang S, Yan Y, et al. CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper[J]. J Exp Bot, 2015, 66:3163-3174. [109] Yang X, Gong P, Li K, et al. A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H + -ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice[J]. J Exp Bot, 2016, 67(9):2761-2776. [110] He HS, Dong Q, Shao Y, et al. Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa[J]. Plant Cell Rep, 2012, 31:1199-1217. [111] Robatzek S, Somssich E. Targets of AtWRKY6 regulation during plant senescence and pathogen defense[J]. Genes Dev, 2002, 16(9):1139-1149. [112] Zhou X, Jiang Y, Yu D. WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis[J]. Mol Cells, 2011, 31(4):303-313. [113] Miao Y, Laun T, Smykowski A, et al. Arabidopsis MEKK1 can take a short cut:I t can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter[J]. Plant Mol Biol, 2007, 65(1-2):63-76. [114] Miao H, Qin Y, da Silva JA, et al. Identification of differentially expressed genes in pistils from self-incompatible Citrus reticulata by suppression subtractive hybridization[J]. Mol Biol Rep, 2013, 40(1):159-169. [115] Ulker B, Shahid Mukhtar M, Somssich IE. The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways[J]. Planta, 2007, 226(1):125-137. [116] Jiang YJ, Liang G, Yang SZ, et al. Arabidopsis WRKY57 functions as a node of convergence for Jasmonic acid- and Auxin-mediated signaling in Jasmonic acid-induced leaf senescence[J]. Plant Cell, 2014, 26:230-245. [117] Han M, Kim CY, Lee J, et al. OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice[J]. Mol Cells, 2014, 37(7):532-539. [118] Bakshi M, Oelmüller R. WRKY transcription factors:Jack of many trades in plants[J]. Plant Signal Behav, 2014, 9(2):e27700. [119] Nuruzzaman M, Sharoni AM, Satoh K, et al. Comparative transcriptome profiles of the WRKY gene family under control, hormone-treated, and drought conditions in near-isogenic rice lines reveal differential, tissue specific gene activation[J]. J Plant Physiol, 2014, 171(1):2-13. [120] Zhang H, Zhao M, Song Q, et al. Identification and function analyses of senescence-associated WRKYs in wheat[J]. Biochem Biophys Res Commun, 2016, 474(4):761-767. [121] Robatzek S, Somssich IE. Targets of AtWRKY6 regulation during plant senescence and pathogen defense[J]. Genes Dev, 2002, 16:e1139-1149. [122] Yan JY, Li CX, Sun L, et al. A WRKY transcription factor regulates Fe translocation under Fe deficiency in Arabidopsis[J]. Plant Physiol, 2016, 171(3):2017-2027. [123] Xu YH, Wang JW, Wang S, et al. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene(+)-delta-cadinene synthase-A[J]. Plant Physiol, 2004, 135(1):507-515. [124] Skibbe M, Qu N, Galis I, et al. Induced plant defenses in the natural environment:Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory[J]. Plant Cell, 2008, 20:1984-2000. [125] Qiu JL, Fiil BK, Petersen K, et al. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus[J]. EMBO J, 2008, 27:2214-2221. [126] Song S, Qi T, Fan M, et al. The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development[J]. PLoS Genet, 2013, 9(7):e1003653. [127] Kato N, Dubouzet E, Kokabu Y. Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica[J]. Plant Cell Physiol, 2007, 48(1):8-18. [128] Jaroslav M, Tomáš K, Josef P, et al. The “putative” role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop(Humulus lupulus L. )[J]. Plant Mol Biol, 2016, 92(3):263-277. [129] Liu J, Chen X, Liang X, et al. Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense[J]. Plant Physiol, 2016, 171(2):1427-1442. [130] Sheikh AH, Eschen-Lippold L, Pecher P, et al. Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana[J]. Plant Sci, 2016, 7:61. [131] Xing DH, Lai ZB, Zheng ZY, et al. Stress-and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense[J]. Mol Plant, 2008, 1(3):459-470. [132] Gao X, Chen X, Lin W, et al. Bifurcation of Arabidopsis NLR immune signaling via Ca 2+ -dependent protein kinases[J]. PLoS Pathog, 2013:e1003127. [133] Zhang Z, Wu Y, Gao M, et al. Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2[J]. Cell Host Microbe, 2012, 11:253-263. [134] Miao Y, Laun TM, Smykowski A, et al. Arabidopsis MEKK1 can take a short cut:it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter[J]. Plant Mol Biol, 2007, 65:63-76. [135] Mao G, Meng X, Liu Y, et al. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis[J]. Plant Cell, 2011:1639-1653. [136] Adachi H, Nakano T, Miyagawa N, et al. WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana[J]. Plant Cell, 2015, 27:2645-2663. [137] Li R, Zhang J, Li J, et al. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores[J]. Elife, 2015, 4:e04805. |
[1] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[2] | LIU Chuan-he, HE Han, HE Xiu-gu, CHEN Xin, LIU Kai, SHAO Xue-hua, LAI Duo, QIN Jian, ZHUANG Qing-li, KUANG Shi-zi, XIAO Wei-qiang. Physiological and Metabolitic Mechanisms of Different Pineapple Cultivars Responding to Low Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(10): 219-230. |
[3] | HAN Shao-jie, ZHENG Jing-wu. Research Advances on the Functional Study of Host Resistance Genes to Heterodera glycines [J]. Biotechnology Bulletin, 2021, 37(7): 14-24. |
[4] | ZHAN Dong-mei, ZHU Chen, ZHOU Cheng-zhe, HUANG Xue-ting, LAI Zhong-xiong, GUO Yu-qiong. Genome-wide Identification of Gro/Tup1 Gene Family in Camellia sinensis and Their Expression Analysis Under Exogenous Phytohormones and Abiotic Stress Treatments [J]. Biotechnology Bulletin, 2021, 37(12): 1-12. |
[5] | GUO Bin-hui, DAI Yi, SONG Li. Research Progress on the Effects of Phytohormones on Crop Root System Development Under Drought Condition [J]. Biotechnology Bulletin, 2018, 34(7): 48-56. |
[6] | KUANG Yong-jie, LIU Lang, YAN Fang, REN Bin, YAN Da-qi, ZHANG Da-wei, LIN Hong-hui, ZHOU Huan-bin. Functions of Phytohormones During the Interactions Between Rice, Pathogens [J]. Biotechnology Bulletin, 2018, 34(2): 74-86. |
[7] | Sun Fan, Luo Chaobing, Zhou Yanni, Zhang Lingyu. The Cloning and Expression Analysis of PwARP-1 in Picea wilsonii [J]. Biotechnology Bulletin, 2014, 0(4): 64-70. |
[8] | Bai Hua, Wang Peiyun, Tian Xiaowei, Yao Xinling. Review on Crosstalk Regulation Involving in Sugar Signal in Plant [J]. Biotechnology Bulletin, 2013, 0(10): 12-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||