[1] Halbleib CM, Ludden PW. Regulation of biological nitrogen fixation[J]. J Nutr, 2000, 130(5):1081-1084. [2]Li W, Lu CD. Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa[J]. J Bacteriol, 2014, 59(4):524-592. [3] Arcondeguy T, Jack R, Merrick M. P(II)signal transduction proteins, pivotal players in microbial nitrogen control[J]. Microbiol Mol Biol Rev, 2001, 65(1):80-105. [4]Vidangos NK, Heideker J. DNA recognition by a σ(54)transcriptional activator from Aquifex aeolicus[J]. J Mol Biol, 2014, 175(19):667-684. [5] Schumacher J, Behrends V, Pan ZS, et al. Nitrogen and carbon status are integrated at the transciptional level by the nitogen regulator BtrC in vivo[J]. Microbiology, 2013, 149(Pt 8):251-262. [6] Hervas AB, Canosa I, Santero E. Transcriptome analysis of Pseudomonas putida in response to nitrogen availability[J]. J Bacteriol, 2008, 190(1):416-420. [7]Desnoues N, Lin M, Guo X, et al. Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice[J]. Microbiology, 2003, 149(Pt 8):2251-2262. [8]Yan Y, Yang J, Dou Y, et al. Nitrogen fixation island and rhizophere competence traits in the genome of root-associated Pseudomonas stutzeri A1501[J]. Proc Natl Acad Sci USA, 2008, 105(21):7564-7569. [9] Mcfarland N, Mccarter L, Artz S, et al. Nitrogen regulatory locus "glnR" of enteric bacteria is composed of cistrons ntrB and ntrC:identification of their protein products[J]. Proc Natl Acad Sci USA, 1981, 78(4):2135-2139. [10] Williams KJ, Bennett MH, Barton GR, et al. Adenylylation of mycobacterial GlnK(PII)protein is induced by nitrogen limitation[J]. Tuberculosis(Edinb), 2013, 49(Pt 8):1251-1262. [11]Chen B, Doucleff M, Wemmer DE, et al. ATP ground- and transition states of bacterial enhancer binding AAA+ ATPases support complex formation with their target protein, sigma54[J]. Structure, 2007, 15(4):429-440. [12] Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models[J]. Bioinformatics, 2010, 27(3):343-350. [13] Jiang H, Shang L, Yoon SH, et al. Optima production of poly-gamma-glutamic acid by metabolically engineered Escherichia coli[J]. Biotechnol Lett, 2006, 29(2):631-647. [14]Hervas AB, Canosa I, Little R, et al. NtrC-dependent regulatory network for nitrogen assimilation in Pseudomonas putida[J]. J Bacteriol, 2009, 181(4):1056-1062. [15] Abbas MM, Mohie-Eldin MM, EI-Manzalawy Y. Assessing the effects of data selection and representation on the development of reliable E. coli sigma 70 promoter region predictors[J]. PLoS One, 2015, 162(19):3028-3039. [16] Zeng J, Spiro S. Finely tuned regulation of the aromatic amine degradation pathway in Escherichia coli[J]. J Bacteriol, 2013, 195(22):5141-5150. [17] Babaer P, Marashi SA, Asad S. Genome-scale reconstruction of the metabolic network in Pseudomonas stutzeri A1501[J]. RSC Publishing, 2015, 41(13):3082-3088. [18]Yan Y, Ping S, Peng J, et al. Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501[J]. BioMed Central, 2010, 115(21):7543-7565. [19] Melchiorsen CR, Jokumsen KV, Villadsen J, et al. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis[J]. Appl Microbiol Biotechnol, 2002, 58(3):338-344. [20]Utrilla J, Gosset G, Martinez A. ATP limitation in a pyruvate formate lyase mutant of Escherichia coli MG1655 increases glycolytic flux to D-lactate[J]. J Ind Microbiol Biotechnol, 2009, 36(8):1057-1062. [21] Sieira R, Arocena GM, Zorreguieta A, et al. A MarR-Type regulator directly activates transcription from the Brucella abortus virB promoter by sharing a redundant role with HutC[J]. J Bacteriol, 2012, 73(13):6143-6158. [22] Vidangos NK, Heidiker J, Lyubimov A, et al. DNA recognition by a σ(54)transcriptional activator from Aquifex aeolicus[J]. J Mol Biol, 2014, 114(3):1162-1169. [23]Hasona A, Kim Y, Healy FG, et al. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose[J]. J Bacteriol, 2004, 186(22):7593-7600.
|