[1] 王军华, 权春善, 郑维, 等. 金黄色葡萄球菌附属基因调节系统[J]. 中国生物工程杂志, 2008, 28(6):93-99. [2] 唐俊妮, 史贤明, 曾志光, 等. 金黄色葡萄球菌毒力调控系统TCRSs和SarA[J]. 上海交通大学学报:农业科学版, 2009, 27(2):171-176. [3] 宋娟, 楚雍烈. 金黄色葡萄球菌基因调节系统研究进展[J]. 生命科学, 2012, 24(5):463-469. [4] Rasko DA, et al. Anti-virulence strategies to combat bacteria-media-ted disease[J]. Nat Rev Drug Discov, 2010, 2:117-128. [5] Barczak AK, Hung DT. Productive steps toward an antimicrobial targeting virulence[J]. Curr Opin Microbiol, 2009, 5:490-496. [6] Cegelski L, Marshall GR, et al. The biology and future prospects of antivirulence therapies[J]. Nat Rev Microbiol, 2008, 1:17-27. [7] Dancer SJ, Kirkpatrick P, Corcoran DS, et al. Approaching zero:Temporal effects of a restrictive antibiotic policy on hospital-acquired Clostridium difficile, extended-spectrumβ-lactamase-producing coliforms and meticillin-resistant Staphylococcus aureus[J]. Int J Antimicrob Agents, 2013, 41(2):137-142. [8] Hiramatsu K, Aritaka N, Hanaki H, et al. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin[J]. Lancet, 1997, 9092:1670-1673. [9] Weigel LM, Clewell DB, Gill SR, et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus[J]. Science, 2003, 302(5650):1569-1571. [10] 刘琳娟, 等. 肿瘤专科医院金黄色葡萄球菌的分布与耐药性分析[J]. 中华医院感染学杂志, 2015, 25(2):291-293. [11] Grundmann H, Aires-de-Sousa M, Boyce J, et al. Emergence and resurgence of meticillin resistant Staphylococcus aureus as a public-health threat[J]. Lancet, 2006, 368(9538):874-885. [12] 袁本清, 宋发谷, 张爱群, 等. 金黄色葡萄球菌耐药性变迁探讨[J]. 中华医院感染学杂志, 2014, 24(24):5989-5991. [13] 刘彩林, 孙自镛, 陈中举, 等. 2006-2011年金黄色葡萄球菌耐药性变迁分析[J]. 中国抗生素杂志, 2013, 6:467-472. [14] 陈叶红, 等. 金黄色葡萄球菌耐药性变迁及抗菌药物应用分析[J]. 中华医院感染学杂志, 2014, 24(2):342-344. [15] Novick RP, Ross H, Projan S, et al. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule[J]. EMBO J, 1993, 12(10):3967-3975. [16] Novick RP, Projan SJ, Kornblum J, et al. The agr P2 operon:an autocatalytic sensory transduction system in Staphylococcus aureus[J]. Mol Gen Genet, 1995, 248(4):446-458. [17] Benito Y, Kolb FA, Romby P, et al. Probing the structure of RNAIII, the Staphylococcus aureus agr regulatory RNA, and identification of the RNA domain involved in repression of protein A expression[J]. RNA, 2000, 6(5):668-679. [18] Tegmark K, et al. Regulation of agr-dependent virulence genes in Staphylococcus aureus by RNAIII from coagulase-negative staphylococci[J]. J Bacteriol, 1998, 12:3181-3186. [19] Bhate MP, et al. Signal transduction in histidine kinases:Insights from newstructures[J]. Structure, 2015, 6:981-994. [20] Wang B, Zhao A, Novick RP, et al. Activation and inhibition of the receptor histidine kinase AgrC occurs through opposite helical transduction motions[J]. Mol Cell, 2014, 53(6):929-940. [21] Mascher T, Helmann JD, Unden G. Stimulus perception in bacterial signal-transducing histidine kinases[J]. Microbiol Mol Biol Rev, 2006, 70(4):910-938. [22] Gao R, Stock AM. Biological insights from structures of two-component proteins[J]. Annu Rev Microbiol, 2009, 1(63):133-154. [23] Srivastava SK, Rajasree K, Fasim A, et al. Influence of the AgrC-AgrA complex on the response time of Staphylococcus aureus quorum sensing[J]. J Bacteriol, 2014, 196(15):2876-2888. [24] Shor E, Chauhan N. A case for two-component signaling systems as antifungal drug targets[J]. PLoS Pathog, 2015, 2:632-647. [25] 李淑娟, 等. 金属螯合亲和层析介质用于六聚组氨酸融合蛋白的纯化研究[J]. 生物工程学报, 2007, 23(5):941-946. [26] QIAGEN公司. 六联组氨酸标记蛋白高水平表达纯化手册 [M]. 2003. [27] 齐明, 钟理, 李伟溢. 巯基乙醇的应用现状和发展趋势[J]. 聚氯乙烯, 2006, 2:1-3. [28] 张强, 刘玲娜. 2-巯基乙醇生产技术与应用[J]. 化学中间体, 2011, 11:43-45. [29] 田勇, 刘传玉, 王文彬, 等. 2-巯基乙醇的合成与应用进展[J]. 黑龙江科学, 2011, 2(3):35-47. |