[1] Mühling M, Harris N, Belay A, et al. Reversal of helix orientation in the cyanobacterium Arthosipira[J]. Journal of Phycology, 2003, 39(2):360-367. [2] 汪志平. 螺旋藻形态建成的分子机制及转座子调控模型[D]. 杭州:浙江大学, 2000. [3] Ma ZL, Gao KS. Spiral breakage and photoinhibition of Arthrospira platensis(Cyanophyta)caused by accumulation of reactive oxygen species under solar radiation[J]. Environmental Experimental Botany, 2010, 68(2):208-213. [4] Møller-Jensen J, Lōwe J. Increasing complexity of the bacterial cytoskeleton[J]. Current Opinion Cell Biology, 2005, 17(1):75-81. [5] Wang Z, Zhao Y. Morphological reversion of Spriulina plantensis:from linear[J]. Journal of Phycology, 2005, 41(3):622-628. [6] Geitler L. Cyanophyceae in raben horst’s “Krypotogamen-Flora”[M]. Akad, Verlagsgesell shaft, Leipzig, 1952, 14:916-931. [7] van Eykelenburg C. On the morphology and ultrstructure of the cell wall of Spirulina platensis[J]. Antonie van Leeuwenhoek Journal of Microbiology Serol, 1977, 43:89-99. [8] Van EC. The ultrastructure of Spirulina platensis in relation to temeperature and light intensity[J]. Antonie Van Leeuwenhoek, 1979, 45(3):369-390. [9] Spirulina CO. The edible microorganism[J]. Microbiological Reviews, 1983, 47(4):551-578. [10] Hindak F. Morphology of trichomes in Spirulina fusiformis Vornichin from Lake Borgria, Kenya[J]. Arch Hydrobiod Algological Studies, 1985, 38/39:201-218. [11] 胡鸿钧. 螺旋藻生物学及生物技术原理[M]. 北京:科学出版社, 2003:9-12. [12] Salleh S, McMinn A. The effects of temperature on the photosynthetic parameters and on recovery of two temperate benthic microalgae, amphora CF. Coffeaeformis and cocconeis CF.Sublittoralis(bacillariophyceae)[J]. Journal of Phycology, 2011, 47(6):1413-1424. [13] Carvalho AP, Silva SO, Baptista JM, et al. Light requirements in microalgal photobireactors:an overview of biophotonic aspects[J]. Applied Microbiology and Biotechnology, 2011, 89(5):1275-1288. [14] Chen M, Chory J, Fankhauser C. Light signal transduction in higher plants. Annu[J]. Annual Review of Genetics, 2004, 38:87-117. [15] Terzaghi WB, Cashmore AR. Light-regulated transcription[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46(1):445-474. [16] Gao K, Li P, Watanabe T, et al. Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis, and DNA of Arthrospira(Spirulina)platensis(cyanophyta)[J]. Journal of Phycology, 2008, 44(3):777-786. [17] 夏蕊琪. 光照强度对螺旋藻形态及生理的影响[D]. 合肥:安徽农业大学, 2006. [18] 尤珊, 郑必胜, 郭祀远. 光照对螺旋藻形态及胞外多糖的影响和机理[J]. 海湖盐与化工, 2003, 33(1):23-26. [19] 吴红艳, 李金梅. 阳光紫外辐射和盐胁迫对钝顶螺旋藻光合作用和形态变化的耦合效应[J]. 植物生理学报, 2011, 47(6):557-564. [20] 杨学文. 螺旋藻生长对温度的相应规律与其低温、高温诱导蛋白的初步研究[D]. 呼和浩特:内蒙古农业大学, 2006. [21] 袁淑珍. 低温胁迫对螺旋藻(节旋藻)代谢功能的影响[D]. 呼和浩特:内蒙古师范大学, 2006. [22] Avigad V. Strain selection of Spirulina suitable for mass production[J]. Hydrobiologia, 1987, 151/152(1):75-77. [23] 师德强, 王素英, 王妮, 等. 培养条件对纺锤螺旋藻 TJSD 生长量和形态的影响[J]. 水产科学, 2009, 28(3):146-149. [24] 殷春涛, 胡鸿钧, 李夜光, 等. 中温螺旋藻新品系的选育研究[J]. 植物科学学报, 1997, 15(3):250-254. [25] 田华, 赵琪, 郭敏, 等. 影响螺旋藻生物量的因素研究进展[J]. 贵州工业大学学报, 2005, 34(3):28-32. [26] 马成浩, 于丽娟, 彭奇均. pH对钝顶螺旋藻生长的影响[J]. 中国食品添加剂, 2004(4):69-72. [27] 汪志平, 徐步进. 甲基磺酸乙酯对钝顶螺旋藻生长和形态的影响[J]. 浙江农业大学学报, 1997, 23(6):645-648. [28] 汪志平, 徐步进, 赵小俊. γ-射线对不同品系和形态螺旋藻藻丝状体的生物学效应[J]. 浙江农业大学学报, 1998, 24(2):111-116. [29] 龚晓敏, 胡鸿钧. 60 Co-γ射线诱变钝顶螺旋藻的研究[J]. 武汉植物学研究, 1996, 14(1):58-66. [30] 陈必链, 王明兹, 庄惠如, 等. 半导体激光对钝顶螺旋藻形态和生长的影响[J]. 光子学报, 2000, 29(5):411-414. [31] 赵萌萌, 王卫卫. He-Ne 激光对钝顶螺旋藻的诱变效应[J]. 光子学报, 2005, 34(3):399-403. [32] Strauss E. Plant biology:when walls can talk, plant biologists listen[J]. Science, 1998, 282(5386):28-29. [33] Vladeanu G, Mitrea N, Titu H. Physiological and electron microscopic characteristics of the Spirulina platensis after 60 Co gamma irradiation[J]. Studies Cercet Biology Series Biology Veg, 1994, 46(2):143-148. [34] Rajagopal S, Muthy S, Mohanty PJ. Effect of ultraviolet-B radiation on intact cells of the cyanobacterium Spirulina platensis:characterization of the alternations in the thylakoid membranes[J]. Journal of Photochemistry and Photobiology Biology, 2000, 54(1):61-66. [35] Hongsthong A, Sirijuntarut M, Prommeenate P, et al. Revealing differentially expressed proteins in two morphological forms of Spirulina platensis by protein analysia[J]. Molecular Biotechol-ogy, 2007, 36(2):123-130. [36] Kojima H, Song Q, Kumar TA, et al. Transposable genetic elements in Spirulina and potential applications for genetic engineering[J]. Chin J Oceanol Limnol, 1998, 16:30-39. [37] Cabeen MT, Jacobs-Wagner C. Skin and bones:the bacterial cytoskeleton, cell wall, and cell morphogenesis[J]. J Cell Biol, 2007, 179(3):381-387. [38] Mayer F. Cytoskeletons in prokaryotes[J]. Cell Biology International, 2003, 27(5):429-438. [39] Ausmees N, Kuhn JR, Jacobs-Wagner C. The bacterial cytoskeleton:an intermediate filament-like function in cell shape[J]. Cell, 2003, 115(6):705-713. [40] Herrmann H, Aebi U. Intermediate filaments:molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds[J]. Annual Review Biochemistry, 2004, 73:749-789. [41] Mingorance J, Tamames J, Vicente M. Geonmic channeling in bacterial cell divesion[J]. Journal Molecular Recogintion, 2004, 17(5):481-487. [42] Owawa M, Anderson DE, Erichson HP. Reconstitution of contractile FtsZ rings in liposomes[J]. Science, 2008, 320(5877):792-794. [43] 赵振坤, 徐虹, 林重阳, 等. 钝顶螺旋藻不同形态藻丝体的蛋白质表达和生理差异的比较研究[J]. 厦门大学学报, 2009, 48(1):119-123. [44] 邹路阳, 吴娟, 曾群安, 徐虹. FtsZ在钝顶螺旋藻形态建成中的作用[J]. 水生生物学报, 2012, 36(5):898-904. [45] 谢彦广. 钝顶节旋藻品系ZJU0137不同螺旋手性藻丝的构建与纯培养及形貌与生理生化特性比较研究[D]. 杭州:浙江大学, 2011. [46] 王景梅. 基于多对钝顶节旋藻不同螺旋手性藻丝蛋白表达共性差异研究[D]. 杭州:浙江大学, 2012. [47] Fulda S, Mikkat S, Huang F, et al. Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. Strain PCC6803[J]. Proteomics, 2006, 6:2733-2745. [48] Barbier BH, Joyard J. Focus on plant proteomics[J]. Plant Physiology and Biochemistry, 2004, 42(12):913-917. |