Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (8): 34-40.doi: 10.13560/j.cnki.biotech.bull.1985.2016.08.007
• Orignal Article • Previous Articles Next Articles
CAI Dong-mei, GONG Guo-li
Revised:
2015-12-05
Online:
2016-08-25
Published:
2016-08-25
CAI Dong-mei, GONG Guo-li. The Current Status and Future Perspectives of Production of Biopharmaceuticals in Escherichia coli[J]. Biotechnology Bulletin, 2016, 32(8): 34-40.
[1] Rodriguez V, Asenjo JA, Andrews BA. Design and implementation of a high yield production system for recombinant expression of peptides[J]. Microbial Cell Fact, 2014, 13(18):1-10. [2] Sahdev S, Khattar SK, Saini KS. Production of active eukaryotic proteins through bacterial expression systems:A review of the existing biotechnology strategies[J]. Mol Cell Biochem, 2008, 307(1-2):249-264. [3] McNulty DE, Claffee BA, Huddleston MJ, et al. Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli[J]. Protein Expr Purif, 2003, 27(2):365-374. [4] Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli[J]. Curr Opin Biotechnol, 1995, 6(5):494-500. [5] Sorensen HP, Laursen BS, Mortensen KK. Bacterial translation initiation-mechanism and regulation[J]. Dev Biophys Biochem, 2002, 2:243-270. [6] Kane JF, Violand BN, Curran DF, et al. Novel in-frame two codon translational hop during synthesis of bovine placental lactogen in a recombinant strain of Escherichia coli[J]. Nucleic Acids Res, 1992, 20(24):6707-6712. [7] Calderone TL, Stevens RD, Oas TG. High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli[J]. J Mol Biol, 1996, 262(4):407-412. [8] Yarian C, Marszalek M, Sochacka E, et al. Modified nucleoside dependent Watson-Crick and wobble codon binding by tRNA Lys UUU species[J]. Biochemistry, 2000, 39(44):13390-13395. [9] Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli[J]. Curr Opin Biotechnol, 1995, 6(5):494-500. [10] Redwan EM. Optimal gene sequence for optimal protein expression in Escherichia coli:principle requirements[J]. Arab J Biotechnol, 2006, 11(1):493-510. [11] Dieci G, et al. tRNA assisted overproduction of eukaryotic ribosom-al proteins[J]. Protein Expr Purif, 2000, 3:346-354. [12] El-Baky NA, Redwan EM. Therapeutic alpha-interferons protein:structure, production, and biosimilar PREP[J]. Biochem Biotechnol, 2015, 45(2):109-127. [13] Jeong W, Shin HC. Supply of the argU gene product allows high-level expression of recombinant human interferon-alpha-2a in Escherichia coli[J]. Biotechnol Lett, 1998, 20(1):19-22. [14] Valente CA, Prazeres DMF, Cabral JMS, et al. Translation feature of human alpha 2b interferon production in Escherichia coli[J]. Appl Environ Microbiol, 2004, 70(8):5033-5036. [15] Ferrer-Miralles N, Villaverde A. Bacterial cell factories for recombinant protein production;expanding the catalogue[J]. Microb Cell Fact, 2013, 12(1):113. [16] Tegel H, Tourle S, Ottosson J, et al. Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta(DE3)[J]. Protein Expr Purif, 2010, 69(2):159-167. [17] Ringquist S, Shinedling S, Barrick D, et al. Translation initiation in Escherichia coli:sequences within the ribosome-binding site[J]. Mol Microbiol, 1992, 6(9):1219-1229. [18] Laursen BS, Sorensen HP, Mortensen KK, et al. Initiation of protein synthesis in bacteria[J]. Mol Biol Rev, 2005, 1:101-123. [19] Stenstrom C, Jin H, Major L, et al. Codon bias at the 3’-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli[J]. Gene, 2001, 263(1-2):273-284. [20] Sprengart ML, Porter AG. Functional importance of RNA interactions in selection of translation initiation codons[J]. Mol Microbiol, 1997, 24(1):19-28. [21] Etchegaray JP, Inouye M. Translational enhancement by an element example of molecular misreading in Alzheimer disease[J]. Trends Neurosci, 1999, 21:331-335. [22] Seo SW, Yang JS, Cho HS, et al. Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels[J]. Sci Rep, 2014, 4(3):2231-2236. [23] Iost I, Dreyfus M. mRNA can be stabilized by DEAD-box proteins[J]. Nature, 1994, 372(6502):193-196. [24] Iost I, Bizebard T, Dreyus M. Functions of DEAD-box proteins in bacteria:current knowledge and pending questions[J]. Biochim Biophys Acta, 2013, 1829(8):866-877. [25] Chen R. Bacterial expression systems for recombinant protein production:E. coli and beyond[J]. Biotechnol Adv, 2012, 30(5):1102-1107. [26] Sanchez JC, Padron G, Santana H, et al. Elimination of an HuIFN alpha 2b readthrough species, produced in Escherichia coli, by replacing its natural translation stop signal[J]. J Biotechnol, 1998, 63(3):179-186. [27] Poole ES, Brown CM, et al. The identity of the base following the stop codon determines the efficiency of in vivo translational termin-ation in Escherichia coli[J]. EMBO J, 1995, 1:151-158. [28] Fisher AC, Haitjema CH, Guarino C, et al. Production of secretory andextracellular N-Linked glycoproteins in Escherichia coli[J]. Appl Environ Microbiol, 2011, 77(3):871-881. [29] Overton TW. Recombinant protein production in bacterial hosts[J]. Drug Discovery Today, 2014, 19(5):590-601. [30] Carrio MM, Villaverde A. Role of molecular chaperones in inclusion body formation[J]. FEBS Lett, 2003, 537(1-3):215-221. [31] Cui SS, Lin XZ, Shen JH. Effect of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948[J]. Protein Expres Purif, 2011, 2:166-172. [32] Ronez F, Arbault P, et al. Co-expression of the small heat shock protein, Lo18, with b-glucosidase in Escherichia coli improves solubilization and reveals various associations with overproduced heterologous protein, GroEL/ES[J]. Biotechnol Lett, 2012, 5:935-939. [33] Jhamb K, Sahoo DK. Production of soluble recombinant proteins in Escherichia coli:Effects of process conditions and chaperone co-expression on cell growth and production of xylanase[J]. Bioresource Technol, 2012, 123(4):135-143. [34] Yan X, Hu S, Guan YX, et al. Co-expression of chaperonin GroEL/GroES markedly enhanced soluble and functional expression of recombinant human interferon-gamma in Escherichia coli[J]. Appl Microbiolb Biotechnol, 2012, 93(3):1065-1074. [35] Voulgaridou GP, Mantso T, Chlichlia K, et al. Efficient E. coli expression strategies for production of soluble human crystalline ALDH3A1[J]. PLoS One, 2013, 8(2):65. [36] Folwarczna J, Moravec T, et al. Efficient expression of human papillomavirus 16 E7 oncoprotein fused to C-terminus of tobacco mosaic virus(TMV)coat protein using molecular chaperones in Escherichia coli[J]. Protein Expres Purif, 2012, 1:152-157. [37] Nausch H, et al. Recombinant production of human interleukin 6 in Escherichia coli[J]. PLoS One, 2013, 1:570-579. [38] Ow DS W, Lim DYX, Nissom PM, et al. Co-expression of Skp and FkpA chaperones improves cell viability and alters the global expression of stress response genes during scFvD1. 3 production[J]. Microb Cell Fact, 2010, 9(8):1-14. [39] Maeng BH, Nam DH, Kim YH. Coexpression of molecular chapero-nes to enhance functional expression of anti-BNPscFv in the cytoplasm of Escherichia coli for the detection of B-type natriuretic peptide[J]. Word J Microbiol Biotechnol, 2011, 6:1391-1398. [40] Khattar SK, Kundu PK, Gulati P, et al. Optimization and enhanced soluble production of biologically active recombinant human p38 mitogen-activated-protein kinase(MAPK)in Escherichia coli[J]. Protein Peptide Lett, 2007, 14(8):756-760. [41] Fahnert B, Lilie H, Neubauer P. Inclusion bodies:formation and utilization[J]. Adv Biochem Eng Biotechnol, 2004, 89:93-142. [42] Jensen EB, Carlsen S. Production of recombinant human growth hormone in Escherichia coli:Expression of different precursors and physiological effects of glucose, acetate and salts[J]. Biotechnol Bioeng, 1990, 36(1):1-11. [43] Vasina JA, Baneyx F. Expression of aggregation prone recombinant proteins at low temperatures:a comparative study of the Escherichia coli cspA and tac promoters systems[J]. Protein Expr Purif, 1997, 9(2):211-218. [44] Lebendiker M, Danieli T. Production of prone-to-aggregate proteins[J]. FEBS Lett, 2014, 588(2):236-46. [45] Papaneophytou CP, Kontopidis G. Statistical approaches to maximize recombinant protein expression in Escherichia coli:a general review[J]. Protein Expr Purif, 2014, 94(2):22-32. [46] Feng Y, Xu Q, Yang T, et al. A novel self-cleavage system for production of soluble recombinant protein in Escherichia coli[J]. Protein Expr Purif, 2014, 99(4):64-69. [47] Jung ST, Kang TH, Kelton W, et al. Bypassing glycosylation:engineering aglycosylated full-length IgG antibodies for human therapy[J]. Curr Opin Biotechnol, 2011, 22(6):858-867. [48] Yim S, et al. High-level secretory production of human granulocytes- colony stimulating factor by fed-batch culture of recombinant Esch-erichia coli[J]. Bioprocess Biosyst Eng, 2001, 4:249-254. [49] Joly JC, et al. Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation [J]. Proc Natl Acad Sci USA, 1998, 6:2773-2777. [50] Reilly DE, Yansura DG. Production of monoclonal antibodies in E. coli[M]//Shire SJ, Gombotz W, Bechtold-Peters K, et al. Current Trends in Monoclonal Antibody Development and Manufacturing. New York:Springer, 2010:295-308. [51] Mavrangelos C, Thiel M, Adamson PJ, et al. Increased yield and activity of soluble single-chain antibody fragments by combing high-level expression and the Skp periplasmic chaperonin[J]. Protein Expr Purif, 2001, 23(2):289-295. [52] Lee YJ, Lee DH, Jeong KJ. Enhanced production of human full-length immunoglobulin G1 in the periplasm of Escherichia coli[J]. Appl Microbiol Biotechnol, 2014, 98(3):1237-1246. [53] Jenkins N. Modification of therapeutic proteins:challenges and prospects[J]. Cytotechnol, 2007, 53(1-3):121-125. [54] Walsh G, Jefferis R. Post-translational modifications in the contex of therapeutic proteins[J]. Nat Biotechnol, 2006, 24(10):1241-1252. [55] Wacker M, Linton D, Hitchen PG, et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli[J]. Science, 2002, 298(5599):1790-1793. [56] Valderrama-Rincon JD, Fisher AC, Merritt JH, et al. An engineered eukaryotic protein glycosylation pathway in Escherichia coli[J]. Nat Chem Biol, 2012, 8(5):434-436. [57] Ollis AA, Zhang S. Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity[J]. Nat Chem Biol, 2014, 10(10):816-822. [58] Merritt JH, Ollis AA, Fisher AC, et al. Glycans-by-design:engineering bacteria for the biosynthesis of complex glycans and glycoconjugates[J]. Biotechnol Bioeng, 2013, 6:1550-1564. [59] Guccui J, Wren B. Hijacking bacterial glycosylation for the production of glycoconjugates, from vaccines to humanized glycoproteins[J]. J Pharm Pharmacol, 2015, 67(3):338-350. [60] Ihssen J, Kowarik M, et al. Production of glycoprotein vaccines in Escherichia coli[J]. Microb Cell Fact, 2010, 9(1):98-102. [61] Wetter M, Kowarik M, Steffen M, et al. Engineering, conjugation, and immunogenicity assessment of Escherichia coli O121 O antigen for its potential use as a typhoid vaccine component[J]. Glycoc-onj J, 2013, 30(5):511-522. |
[1] | CHEN Cai-ping, REN Hao, LONG Teng-fei, HE Bing, LU Zhao-xiang, SUN Jian. Research Advances in the Treatment of Inflammation Bowel Disease Using Escherichia coli Nissle 1917 [J]. Biotechnology Bulletin, 2023, 39(6): 109-118. |
[2] | YIN Ming-hua, YU Huan-yuan, XIAO Xin-yi, WANG Yu-ting. Chloroplast Genomic Characterization and Phylogenetic Analysis of Colocasia esculenta L. Schoot var. cormosus cv. ‘Hongyayu’ from Jiangxi Yanshan [J]. Biotechnology Bulletin, 2023, 39(6): 233-247. |
[3] | DONG Cong, GAO Qing-hua, WANG Yue, LUO Tong-yang, WANG Qing-qing. Increasing the Expression of FAD-dependent Glucose Dehydrogenase by Recombinant Pichia pastoris Using a Combined Strategy [J]. Biotechnology Bulletin, 2023, 39(6): 316-324. |
[4] | LI Yan-xia, WANG Jin-peng, FENG Fen, BAO Bin-wu, DONG Yi-wen, WANG Xing-ping, LUORENG Zhuo-ma. Effects of Escherichia coli Dairy Cow Mastitis on the Expressions of Milk-producing Trait Related Genes [J]. Biotechnology Bulletin, 2023, 39(2): 274-282. |
[5] | TANG Rui-qi, ZHAO Xin-qing, ZHU Du, WANG Ya. Stress Tolerance of Escherichia coli to Inhibitors in Lignocellulosic Hydrolysates [J]. Biotechnology Bulletin, 2023, 39(11): 205-216. |
[6] | LI Ren-han, ZHANG Le-le, LIU Chun-li, LIU Xiu-xia, BAI Zhong-hu, YANG Yan-kun, LI Ye. Development of an L-tryptophan Biosensor Based on the Violacein Biosynthesis Pathway [J]. Biotechnology Bulletin, 2023, 39(10): 80-92. |
[7] | LI Hai-li, LANG Li-min, ZHANG Qing-xian, YOU Yi, ZHU Wen-hao, WANG Zhi-fang, ZHANG Li-xian, WANG Ke-ling. Identification and Drug Resistance of Escherichia coli Simultaneously Producing Carbapenemase NDM-1 and NDM-5 [J]. Biotechnology Bulletin, 2022, 38(9): 106-115. |
[8] | CHENG Shen-wei, ZHANG Ke-qiang, LIANG Jun-feng, LIU Fu-yuan, GAO Xing-liang, DU Lian-zhu. Establishment of a Triple Droplet Digital PCR Quantitative Detection Method for Typical Pathogenic Bacteria in Livestock and Poultry Manure [J]. Biotechnology Bulletin, 2022, 38(9): 271-280. |
[9] | ZHAO Yan-kun, LIU Hui-min, MENG Lu, WANG Cheng, WANG Jia-qi, ZHENG Nan. Research Progress in Heteroresistance of Escherichia coli [J]. Biotechnology Bulletin, 2022, 38(9): 59-71. |
[10] | GAO Wei-xin, HUANG Huo-qing, ZHAO Jing, ZHANG Xin, YANG Ning, YANG Hao-meng. Construction and Activity Verification of Ribonucleoprotein Complex for Gene Editing [J]. Biotechnology Bulletin, 2022, 38(8): 60-68. |
[11] | SUN Man-luan, GE Sai, BU Jia, ZHU Zhuang-yan. Regulation Mechanism of Ribonucleases in Escherichia coli [J]. Biotechnology Bulletin, 2022, 38(3): 234-245. |
[12] | LI Xiao-fang, LIU Hui-yan, PAN Lin, AI Zhi-yu, LI Yi-ming, ZHANG Heng, FANG Hai-tian. Breeding High-yield L-isoleucine Escherichia coli by ARTP Mutagenesis [J]. Biotechnology Bulletin, 2022, 38(1): 150-156. |
[13] | DUAN Xu-guo, ZHANG Yu-hua, HUANG Ting-ting, DING Qian, LUAN Shu-yue, ZHU Qiu-yu. Synergetic Enhancing the Soluble Expression of Thermotoga maritima α-Glucan Phosphorylase by Chemical Chaperones and Induction Condition Optimization [J]. Biotechnology Bulletin, 2021, 37(8): 233-242. |
[14] | WU Rong, CAO Jia-rui, CAO Jun, LIU Fei-xiang, YANG Meng, SU Er-zheng. Expression and Fermentation Optimization of Candida antarctica Lipase B in Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(2): 138-148. |
[15] | WANG Kai-kai, WANG Xiao-lu, SU Xiao-yun, ZHANG Jie. Optimization and Application of Double-plasmid CRISPR-Cas9 System in Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(12): 252-264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||