[1] Halkier BA, Gershenzon J. Biology and biochemistry of glucosinola-tes[J]. Annu Rev Plant Biol, 2006, 57(57):303-333. [2] Sønderby IE, Geu-Flores F, Halkier BA. Biosynthesis of glucosino-lates-gene discovery and beyond[J]. Trends in Plant Science, 2010, 15(5):283-290. [3] Wittstock U, Halkier BA. Glucosinolate research in the Arabidopsis era[J]. Trends in Plant Science, 2002, 7(6):263-270. [4] Yuan P, Chen BA, Liu DL. Anticancer mechanisms and researches of isothiocyanates[J]. Chinese Journal of Natural Medicines, 2008, 6(5):325-332. [5] Navarro SL, Li F, Lampe JW. Mechanisms of action of isothiocyanates in cancer chemoprevention:an update[J]. Food & Function, 2011, 2(10):579-587. [6] Fuentes F, Paredes-Gonzalez X, Kong AT. Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, Indole-3-Carbinol/3, 3'-Diindolylmethane:Antioxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy[J]. Curr Pharmacol Rep, 2015, 1(3):179-196. [7] 钟海秀, 陈亚州, 阎秀峰. 植物芥子油苷代谢及其转移[J]. 生物技术通报, 2007(3):44-48. [8] Matile PH. The mustard oil bomb-compartmentation of the myrosinase system[J]. Biochemie und Physiologie der Pflanzen, 1980, 175(8-9):722-731. [9] Rask L, Andréasson E, Ekbom B, et al. Myrosinase:gene family evolution and herbivore defense in Brassicaceae[J]. Plant Molecular Biology, 2000, 42(1):93-114. [10] Chen S, Halkier BA. Functional expression and characterization of the myrosinase MYR1 from Brassica napus in Saccharomyces cerevisiae[J]. Protein Expr Purifi, 1999, 17(3):414-420. [11] Natarajan S, Thamilarasan SK, Park JI, et al. Molecular modeling of myrosinase from Brassica oleracea:A structural investigation of sinigrin interaction[J]. Genes, 2015, 6(4):1315-1329. [12] Lombard V, Ramulu HG, Drula E, et al. The carbohydrate-active enzymes database(CAZy)in 2013[J]. Nucleic Acids Research, 2014, 42(1):490-495. [13] Wittstock U, Burow M. Glucosinolate breakdown in Arabidopsis:mechanism, regulation and biological significance[J]. Arabidopsis Book, 2010, 2010(8):134-134. [14] Bednarek P, Piślewska-Bednarek M, Svatoš A, et al. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense[J]. Science, 2009, 323(5910):101-106. [15] Xu Z, Escamilla-Treviño L, Zeng L, et al. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1[J]. Plant Molecular Biology, 2004, 55(3):343-367. [16] Andersson D, Chakrabarty R, Bejai S, et al. Myrosinases from root and leaves of Arabidopsis thaliana have different catalytic properties[J]. Phytochemistry, 2009, 70(11):1345-1354. [17] Zhang J, Pontoppidan B, Xue J, et al. The third myrosinase gene TGG3 in Arabidopsis thaliana is a pseudogene specifically expressed in stamen and petal[J]. Physiologia Plantarum, 2002, 115(1):25-34. [18] 汪萌, 伍祚斌, 李定琴, 等. 拟南芥芥子酶基因 TGG6 是花特异表达的假基因[J]. 生命科学研究, 2007, 11(4):316-322. [19] Fu L, Han B, Tan D, et al. Identification and evolution of functional alleles of the previously described pollen specific myrosinase pseudogene AtTGG6 in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2016, 17(2):262-275. [20] Zhao Z, Zhang W, Stanley BA, et al. Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways[J]. The Plant Cell, 2008, 20(12):3210-3226. [21] Hamanishi ET. Drought induces alterations in the stomatal development program in Populus[J]. Journal of Experimental Botany, 2012, 63(13):4959-4971. [22] Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6951):901-908. [23] 曾兴权, 王玉林, 徐齐君, 等. 青稞 HbSnRK2. 4的克隆及其序列特征与表达特性分析[J]. 生物技术通报, 2015, 31(2):116-121. [24] Finkelstein R. Abscisic acid synthesis and response[J]. Arabidopsis Book, 2013, 2013(11):166. [25] Gollan T, Passioura JB, Munns R. Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves[J]. Functional Plant Biology, 1986, 13(4):459-464. [26] Zhang J, Davies WJ. Does ABA in the xylem control the rate of leaf growth in soil-dried maize and sunflower plants?[J]. Journal of Experimental Botany, 1990, 41(9):1125-1132. [27] IIslam MM, Tani C, Watanabe-Sugimoto M, et al. Myrosinases, TGG1 and TGG2, redundantly function in ABA and MeJA signaling in Arabidopsis guard cells[J]. Plant and Cell Physiology, 2009, 50(6):1171-1175. [28] Nour-Eldin HH, Hansen BG, Nørholm MHH, et al. Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments[J]. Nucleic Acids Res, 2006, 34(18):122. [29] 陈吉宝, 赵丽英, 毛新国, 等. 转PvP5CS1基因拟南芥植株对干旱和盐胁迫的反应[J]. 作物学报, 2010, 36(1):147-153. [30] Luo X, Bai X, Sun X, et al. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling[J]. J Exp Bot, 2013, 64(8):2155-2169. [31] Martinez-Ballesta MDC, Carvajal M. Myrosinase in Brassicaceae:the most important issue for glucosinolate turnover and food quality[J]. Phytochemistry Reviews, 2015, 14(6):1-7. [32] Martínez-Ballesta M, Moreno-Fernández DA, Castejón D, et al. The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2015, 2015(6):524. [33] 刘庆霞, 国静, 阎秀峰. 拟南芥芥子油苷含量对外源茉莉酸的响应[J]. 东北农业大学学报, 2011, 42(1):133-138. [34] 段德玉, 刘小京, 李存桢, 等. N素营养对NaCl胁迫下盐地碱蓬幼苗生长及渗透调节物质变化的影响[J]. 草业学报, 2005, 14(1):63-68. |