[1] 汪辉, 周禾, 高凤芹等. 能源草发酵产沼气的研究进展[J]. 山东农业科学, 2014, 46(3):135-139. [2] Gallego L, Escobar A, Penuela M. King Grass:A promising material for the production of second-generation butanol[J]. Fuel, 2015, 143:399-403. [3] 牛红志, 李连华, 孔晓英, 等. 三种能源草厌氧发酵制备生物燃气初步研究[J]. 新能源展, 2015(3):192-196. [4] 高瑞芳, 张建国. 能源草研究进展[J]. 草原与草坪, 2013, 1(33):89-96. [5] 闫莉, 吕惠生, 张敏华. 纤维素乙醇生产技术及产业化进展[J]. 酿酒科技, 2013(10):80-84. [6] Ding SY, Himmel ME. The maize primary cell wall microfibril:a new model derived from direct visualization[J]. Agric Food Chem, 2006, 54(3):597-606. [7] 贾晶霞, 梁宝忠, 王艳红, 等. 不同汽爆预处理对干玉米秸秆青贮效果的影响[J]. 农业工程学报2013, 29(20):192-198. [8] Kaien R, Fumitaka S, Jun A, et al. Biomass yield and nitrogen use efficiency of cellulosic energy crops for ethanol production[J]. Biomass and Bioenergy, 2012, 37:330-334. [9] 阎金龙, 王艳君, 马烽, 等. 木质纤维素原料预处理技术相关研究进展[J]. 中国酿造, 2013, 32(11):7-10. [10] Vasco-correa J, Li YB. Solid-state anaerobic digestion of fungal pretreated Miscanthus sinensis harvested in two different seasons[J]. Bioresource Technology, 2015, 185:211-217. [11] Scholl AL, Menegol D, Pitarelo AP, et al. Ethanol production from sugars obtained during enzymatic hydrolysis of elephant grass(Pennisetum purpureum, Schum. )pretreated by steam explosion[J]. Bioresource Technology, 2015, 192:228-237. [12] Alvira P, Tomás-Pejó E, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:a review[J]. Bioresource Technology, 2010, 101(13):4851-4861. [13] Conde MC, Jiménez GA, Halwagi EM. A comparison of pretreatment methods for bioethanol production from lignocellulosic materials[J]. Process Safety and Environmental Protection, 2012, 90(3):189-202. [14] Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production:current perspectives, potential issues and future prospects[J]. Progress in Energy and Combustion Science, 2012, 38(4):449-467. [15] Zhang K, Loretta J, Vara P, et al. Comparison of big bluestem with other native grasses:chemical composition and biofuel yield[J]. Energy, 2015, 83:358-365. [16] Laura C, María BR, Mairan G, et al. Evaluation of dilute acid and alkaline pretreatments enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production[J]. Biomass and Bioenergy, 2015, 74:193-201. [17] Kang KE, Chung DP, Kim Y, et al. High-titer ethanol production from simultaneous saccharification and fermentation using a continuous feeding system[J]. Fuel, 2015, 148:18-24. [18] Wang Z, Lv Z, Du JL, et al. Combined process for ethanol fermentation at high-solids loading and biogas digestion from unwashed steam-exploded corn stover[J]. Bioresource Technology, 2014, 166:282-287. [19] Camesasca L, María Belen R, Mairan G, et al. Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production[J]. ScienceDirect, 2015, 74:193- 201. [20] Kallioinen A, Uusitalo J, Pahkala K, et al. Reed canary grass as a feedstock for 2nd generation bioethanol production[J]. Bioresource Technology, 2012, 123:669-672. [21] Kaien R, Fumitaka S, Jun A, et al. Biomass yield and nitrogen use efficiency of cellulosic energy crops for ethanol production[J]. Biomass and Bioenergy, 2012, 37:330-334. [22] Krzysztof JJ, Bogdan D, Wojciech SB, et al. Energy efficiency of crops grown for biogas production in a large-scale farm in Poland[J]. Energy, 2016, 109:277-286. [23] Hamed M, Mashad E. Biomethane and ethanol production potential of spirulina platensis algae and enzymatically saccharified switchgrass[J]. Biochemical Engineering Journal, 2015, 93:119-127. [24] Van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synertistic cooperation between enzymes-factors affecing enzymes, conversion and synergy[J]. Biotechnol Adv, 2012, 30:1458-1480. [25] Luis JG, Andrey E, Mariana P. King Grass:a promising material for the production of second-generation butanol[J]. Fuel, 2015, 4:399-403. [26] Rashmi K, Rohit R, Ramesh B, et al. Saccharification of alkali treated biomass of kans grass contributes higher sugar in contrast to acid treated biomass[J]. Chemical Engineering Journal, 2013, 230:36-47. [27] Suryawati L, Wilkins MR, Bellmer DD, et al. Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4[J]. Process Biochemistry, 2009, 44(5):540-545. [28] Luca C, Samuele L, Carlo R, et al. Giant cane(Arundo donax L.)can substitute traditional energy crops in producing energy by anaerobic digestion, reducing surface area and costs:A full-scale approach[J]. Bioresource Technology, 2016, 218:826-832. [29] Wahida R, Susanne FN, Veronica MH,et al. Methane production potential from Miscanthus sp.:Effect of harvesting time, genotypes and plant fractions[J]. Biosystems Engineering, 2015, 133:71-80. [30] Kreuger E, Sipos B, Zacchi G, et al. Bioconversion of industrial hemp to ethanol and methane:The benefits of steam pretreatment and co-production[J]. Bioresource Technology, 2011, 3(102):3457-3465. [31] Simona M, Alexander Br, Franz T, et al. Biogas production from steam-exploded miscanthus and utilization of biogas energy and CO 2 in greenhouses[J]. Biomass and Bioenergy, 2013, 6:620-630. [32] Castrillón L, Fernández NY, Ormaechea P, et al. Methane production from cattle manure supplemented with crude glycerin from the biodiesel industry in CSTR and IBR. [J]. Bioresource Technology 2013, 127:312-317. [33] Wang F, Taira H, Jun T. Enhancement of anaerobic digestion of shredded grass by co-digestion with sewage sludge and hyperthermophilic pretreatment[J]. Bioresource Technology, 2014, 169:299-306. [34] Dareioti MA, Kornaros M. Effect of hydraulic retention time(HRT)on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system[J]. Bioresource Technology, 2014:407-415. [35] Kaparaju P, Serrano M, Angelidaki I. Optimization of biogas production from wheat straw stillage in UASB reactor[J]. Applied Energy, 2010, 87(12):3779-3783. [36] Lehtoma A, Nizami AS, Murphy JD, et al. Optimizing the thermophilic hydrolysis of grass silage in a two-phase anaerobic digestion system[J]. Bioresource Technology, 2013, 143:117-125. [37] Carvalho AR, Fragosoa R, Gominho J. et al. Water-energy nexus:anaerobic co-digestion with elephant grass hydrolyzate[J]. Journal of Environmental Management, 2016, 181:48-53. [38] Luo G. Anaerobic treatment of cassava stillage for hydrogen and methane production in continuously stirred tank reactor(CSTR)under high organic loading rate(OLR)[J]. Nrnaonal Jornal of Hydrogn Nrgy, 2010, (21):11733-11737. [39] Westerholm M, Hansson M, Schnürer A. Improved biogas production from whole stillage by co-digestion with cattle manure[J]. Bioresource Technology, 2012, 114:314-319. [40] Zuo Z, Tian S, Chen ZB, et al. Soaking pretreatment of corn stover for bioethanolproduction followed by anaerobic digestion process[J]. Appl Biochem Biotechnol, 2012, 167:2088-2102. |