[1] Gupta B, Huang B. Mechanism of salinity tolerance in plants:phy-siological, biochemical, and molecular characterization[J] . Inter-national Journal of Genomics, 2014, doi:10.1155/2014/701596. [2] Rodriguez P, Torrecillas A, Morales MA, et al. Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants[J] . Environmental and Experimental Botany, 2005, 53(2):113-123. [3] Jurk D, Wilson C, Passos JF, et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice[J] . Nature Communications, 2014, 2:4172. [4] Fouquerel E, Lormand J, Bose A, et al. Oxidative guanine base damage regulates human telomerase activity[J] . Nature Structural & Molecular Biology, 2016, 23:1092-1100. [5] Nelson ADL, Beilstein MA, Shippen DE. Plant telomeres and telomerase[M] . Molecular Biology. Springer New York, 2014:25-49. [6] Lu C, Fu W, Mattson MP. Telomerase protects developing neurons against DNA damage-induced cell death[J] . Developmental Brain Research, 2001, 131(1):167-171. [7] Shin KH, Kang MK, Dicterow E, et al. Introduction of human telomerase reverse transcriptase to normal human fibroblasts enhances DNA repair capacity[J] . Clinical Cancer Research, 2004, 10(7):2551-2560. [8] Akiyama M, Ozaki K, Kawano T, et al. Telomerase activation as a repair response to radiation-induced DNA damage in Y79 retinoblastoma cells[J] . Cancer Letters, 2013, 340(1):82-87. [9] Kaloyianni M, Pouikli A, Kyrka L, et al. Telomerase overexpression in human mesenchymal stem cells offers protection against oxidative DNA damage accumulation[J] . Cytotherapy, 2015, 17(6):S34-S35. [10] Haendeler J, Dr?se S, Büchner N, et al. Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage[J] . Arterioscler Thromb Vasc Biol, 2009;29(6):929-35. [11] Ahmed S, Passos JF, Birket MJ, et al. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress[J] . Journal of Cell Science, 2008, 121(7):1046-1053. [12] Fojtová M, Fulne?ková J, Fajkus J, et al. Recovery of tobacco cells from cadmium stress is accompanied by DNA repair and increased telomerase activity[J] . Journal of Experimental Botany, 2002, 53(378):2151-2158. [13] 张徐俞, 王瑾瑜, 郑广顺, 等. 盐胁迫下沙冬青细胞端粒酶活性的变化与DNA稳定性的关系[J] . 生物技术通报, 2014(10):134-138. [14] 戴松香, 陈少良, Fritz E, 等 . 盐胁迫下胡杨和毛白杨叶细胞中的离子区隔化[J] . 北京林业大学学报, 2006, 28(2):1-5. [15] Chen S, Li J, Wang S, et al. Salt, nutrient uptake and transport, and ABA of Populus euphratica;a hybrid in response to increasing soil NaCl[J] . Trees, 2001, 15(3):186-194. [16] Junghans U, Polle A, Düchting P, et al. Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology[J] . Plant, Cell & Environment, 2006, 29(8):1519-1531. [17] Yang Y, Zhang F, Zhao M, et al. Properties of plasma membrane H+-ATPase in salt-treated Populus euphratica callus[J] . Plant Cell Reports, 2007, 26(2):229. [18] Wang R, Chen S, Zhou X, et al. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress[J] . Tree Physiology, 2008, 28(6):947-957. [19] Zhang H, Yin W, Xia X. Calcineurin B-Like family in Populus:comparative genome analysis and expression pattern under cold, drought and salt stress treatment[J] . Plant Growth Regulation, 2008, 56(2):129-140. [20] Chen S, Polle A. Salinity tolerance of Populus[J] . Plant Biology, 2010, 12(2):317-333. [21] 卢骁, 兰小中, 杨凤娇, 等. 喜马拉雅紫茉莉瘦果粘液对种子低温萌发的保护[J] . 草地学报, 2014, 22(6):1281-1287. [22] 何国维, 李伟光, 王瑞雪, 等. 利用2, 3, 5-三苯基氯化四氮唑(TTC)测定细胞活力的方法与应用[J] . 军事医学, 2014(5):388-391. [23] 李忠光, 龚明. 植物中超氧阴离子自由基测定方法的改进[J] . 云南植物研究, 2005(2):211-216. [24] 陈禹兴, 付连双, 王晓楠, 等. 低温胁迫对冬小麦恢复生长后植株细胞膜透性和丙二醛含量的影响[J] . 东北农业大学学报, 2010(10):10-16. [25] 王瑾瑜, 张徐俞, 王雅群, 等. 用改进的TRAP法测定树木端粒酶活性[J] . 应用与环境生物学报, 2012(4):682-686. [26] Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signaling[J] . Journal of Experimental Botany, 2014, 65(5):1229-1240. [27] Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress[J] . Physiologia Plantarum, 2008, 133(3):481-489. [28] Ksouri R, Megdiche W, Debez A, et al. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima[J] . Plant Physiology and Biochemistry, 2007, 45(3):244-249. [29] 乔佩, 卢存福, 李红梅, 等. 盐胁迫对诱变小麦种子萌发及幼苗生理特性的影响[J] . 中国生态农业学报, 2013(6):720-727. [30] Puyang X, An M, Han L, et al. Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass(Poa pratensis L. )cultivars[J] . Ecotoxicology and Environmental Safety, 2015, 117:96-106. [31] Li JY, Jiang AL, Zhang W. Salt stress-induced programmed cell death in rice root tip cells[J] . Journal of Integrative Plant Biology, 2007, 49(4):481-486. [32] Pan J, Zhu M, Chen H. Aluminum-induced cell death in root-tip cells of barley[J] . Environmental and Experimental Botany, 2001, 46(1):71-79. [33] Sharma GG, Gupta A, Wang H, et al. hTERT associates with human telomeres and enhances genomic stability and DNA repair[J] . Oncogene, 2003, 22(1):131-146. [34] Kim SY, Kim RH, Huh TL. α-Phenyl-N-t-butylnitrone protects oxidative damage to HepG2 cells[J] . Journal of Biochemistry and Molecular Biology, 2000, 34(1):43-46. |