[1] 赵久然, 王帅, 李明, 等. 玉米育种行业创新现状与发展趋势[J]. 植物遗传资源学报, 2018, 19(3):435-446. [2] 张洪生, 盖伟玲, 李玲燕, 等. 种植密度对不同玉米品种抗倒伏性及产量的影响[J]. 中国种业, 2009, 6(17):34-35. [3] 刘鑫, 谢瑞芝, 牛兴奎, 等. 种植密度对东北地区不同年代玉米生产主推品种抗倒伏性能的影响[J]. 作物杂志, 2012, 5(33):126-130. [4] 黄海, 陈德龙, 常莹, 等. 玉米品种抗倒能力差异及其机制研究[J]. 南京农业大学学报, 2014, 37(4):22-30. [5] 程云, 王枟刘, 杨静, 等. 种植密度对夏玉米基部节间性状与倒伏的影响[J]. 玉米科学, 2015, 23(5):112-116. [6] 姚敏娜, 施志国, 薛军, 等. 种植密度对玉米茎秆皮层结构及抗倒伏能力的影响[J]. 新疆农业科学, 2013, 50(11):2006-2014. [7] 勾玲, 黄建军, 孙锐, 等. 玉米不同耐密植品种茎秆穿刺强度的变化特征[J]. 农业工程学报, 2010, 26(11):156-161. [8] Chen S, Chen H. Shen X, et al.Effects of planting density and nitrogen amount on stalk lodging-resistance and yield of summer maize in sichuan basin[J]. Agricultural Science & Technology, 2012, 10(28):2147-2151. [9] 刘卫星, 王晨阳, 王强, 等. 不同玉米品种茎秆抗倒特性及其与产量的关系[J]. 河南农业科学, 2015, 44(7):17-21. [10] 于广文, 李砚, 徐成坤. 玉米抗倒伏品种筛选及栽培技术研究[J]. 杂粮作物, 2007, 27(2):110-111. [11] Multani DS, Briggs SP, Chamberlin MA, et al.Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants[J]. Science, 2003, 302(5642):81-84. [12] Tsuda K, Abraham-Juare MJ, et al.KNOTTED1 cofactors, BLH12 and BLH14, regulate internode patterning and vein anastomosis in maize[J]. Plant Cell, 2017, 29(5):1105-1118. [13] 姜惟廉, 郭日跻, 刘元芝, 等. 玉米优异核心种质资源多基因矮生系5003及其姊妹系5005创制[J]. 玉米科学, 2013, 21(5):1-5. [14] Peiffer JA, Romay MC, Gore MA, et al.The genetic architecture of maize height[J]. Genetics, 2014, 196(4):1337-1356. [15] Lawit SJ, Wych HM, Xu D, et al.Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development[J]. The Plant Cell Physiol, 2010, 51(11):1854-1868. [16] 王立静, 哈丽旦, 张素梅, 等. 新的玉米矮秆突变基因的鉴定与遗传分析[J]. 华北农学报, 2008, 23(5):23-25. [17] 王益军, 苗楠, 施亚婷, 等. 一份玉米显性矮杆突变体的遗传分析[J]. 华北农学报, 2010, 25(5):90-93. [18] Wang YD, Deng D, Ding H, et al.Gibberellin biosynthetic deficie-ncy is responsible for maize dominant Dwarf11(D11)mutant phenotype:physiological and transcriptomic evidence[J]. PLoS One, 2013, 8(6):e66466. [19] Johal GS, Briggs SP.Reductase activity encoded by the HM1 disease resistance gene in maize[J]. Science, 1992, 5084:985-987. [20] Chen Y, Hou M, Liu L, et al.The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol[J]. Plant Physiol, 2014, 166(4):2028-2039. [21] Klintworth GK.Corneal dystrophies[J]. Orphanet Journal of Rare Diseases, 2009, 4(7):1-38. [22] Bensen RJ, Johal GS, Crane VC, et al.Cloning and characterization of the maize An1 gene[J]. Plant Cell, 1995, 7(1):75-84. [23] Castorina G., Persico M, Zilio M, et al. The maize lilliputian1(lil1)gene, encoding a brassinosteroid cytochrome P450 C-6 oxidase, is involved in plant growth and drought response[J]. Annales Botanici Fennici, 2018, 122(2):227-238. [24] 李启芳, 王立静, 商伟, 等. 玉米矮杆突变体52333Dt降秆机制的初步研究[J]. 山东农业科学 2010, 10(15):24-26. [25] Shi YS, Yu YT, Song YC, et al.QTL Identification for plant height in a new dwarf germplasm of maize[J]. Acta Agronomica Sinica, 2010, 36(2):256-260. [26] 戚洪源, 李卫华, 付志远, 等. 玉米隐性矮秆突变体的遗传分析与初步定位[J]. 河南农业大学学报, 2013(3):245-249. [27] Wei XJ, Tang SQ, Shao GN, et al.Fine mapping and characterization of a novel dwarf and narrow-leaf mutant dnl1 in rice[J]. Genetics Mol Res, 2013, 12(3):3845-3855. [28] Bajguz A, Tretyn A.The chemical characteristic and distribution of brassinosteroids in plants[J]. Phytochemistry, 2003, 62(7):1027-1046. [29] 魏灵珠, 程建徽, 李琳, 等. 赤霉素生物合成与信号传递对植物株高的调控[J]. 生物工程学报, 2012, 28(2):144-153. [30] Liu C, Zheng S, Gui J, et al.Shortened basal internodes encodes a gibberellin 2-Oxidase and contributes to lodging resistance in rice[J]. Molecular Plant, 2018, 11(2):288-299. [31] 谈心, 马欣荣. 赤霉素生物合成途径及其相关研究进展[J]. 应用与环境生物学报, 2008, 14(4):571-577. [32] Hartwig T, Chuck GS, Fujioka S, et al.Brassinosteroid control of sex determination in maize[J]. Proc Natl Acad Sci USA, 2011, 108(49):19814-19819. [33] Friedrichsen DM, Joazeiro CA, et al.Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase[J]. Plant Physiol, 2000, 4:1247-1256. [34] Li J.Brassinosteroids signal through two receptor-like kinases[J]. Curr Opin Plant Biol, 2003, 6(5):494-499. [35] Lv H, Zheng J, Wang T, et al.The maize d2003, a novel allele of VP8, is required for maize internode elongation[J]. Plant Mol Biol, 2014, 84(3):243-257. [36] Benabdellah K, Cobo M, Munoz P, et al.Development of an all-in-one lentiviral vector system based on the original TetR for the easy generation of Tet-ON cell lines[J]. PLoS One, 2011, 6(8):e23734. [37] Chao JS, Chao CC, Chang CL, et al.Development of single-vector Tet-on inducible systems with high sensitivity to doxycycline[J]. Molecular Biotechnol, 2012, 51(3):240-246. [38] Figueiredo DD, Kohler C.Auxin:a molecular trigger of seed development[J]. 2018, 32(7-8):479-490. [39] Demura T, Ye ZH.Regulation of plant biomass production[J]. Current Opinion in Plant Biology, 2010, 13(3):299-304. |