Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (11): 27-35.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0536
Previous Articles Next Articles
LI Jian-gang1, LIU Rui-yuan1, PENG Dan-ni1,2, LI Wen-jian1, DONG Xi-cun2, MA Jian-zhong1
Received:
2018-06-11
Online:
2018-11-26
Published:
2018-11-28
LI Jian-gang, LIU Rui-yuan, PENG Dan-ni, LI Wen-jian, DONG Xi-cun, MA Jian-zhong. Advances in Physiological,Biochemical and Response Mechanism of Sweet Sorghum Under Cadmium Stress[J]. Biotechnology Bulletin, 2018, 34(11): 27-35.
[1] 段光正. 能源革命:本质探究及中国的选择方向[D]. 郑州:河南大学, 2016. [2] 徐枫, 唐镭. 节能减排背景下广东能源结构优化及对策研究[J]. 科技管理研究, 2015, 35(15):233-239. [3] 宋伟, 陈百明, 刘琳. 中国耕地土壤重金属污染概况[J]. 水土保持研究, 2013, 20(2):93-298. [4] Krämer U.Metal hyperaccumulation in plants[J]. Annual Review of Plant Biology, 2010, 61:517-534. [5] Shukla S, Felderhoff TJ, Saballos A, et al.The relationship between plant height and sugar accumulation in the stems of sweet sorghum(Sorghum bicolor(L.)Moench)[J]. Field Crops Research, 2017, 203:181-191. [6] 王海慧, 恒福, 罗瑛, 等. 土壤重金属污染及植物修复技术[J]. 中国农学通报, 2009, 25(11):210-214. [7] Bauddh K, Singh K, Singh B, et al.Ricinus communis:a robust plant for bio-energy and phytoremediation of toxic metals from contaminated soil[J]. Ecological Engineering, 2015, 84:640-652. [8] Nwaichi EO, Colin SE.Sequestration of PAHs in a phytoremediation using indian mustard and ambara plants[J]. Journal of Biotechnology Research, 2017, 3(5):31-41. [9] 高华晨, 钱雪冬, 白露, 等. 国内五个甜高粱主栽品种生理生化指标的比较研究[J]. 湖北农业科学, 2017, 56(19):3621-3623. [10] Díaz-Nava LE, Montes-Garcia N, Domínguez JM, et al.Effect of carbon sources on the growth and ethanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice[J]. Bioprocess and Biosystems Engineering, 2017, 40(7):1069-1077. [11] Zhuang P, Wensheng SHU, Zhian LI, et al.Removal of metals by sorghum plants from contaminated land[J]. Journal of Environmental Sciences, 2009, 21(10):1432-1437. [12] Cobbett CS.Phytochelatins and their roles in heavy metal detoxification[J]. Plant Physiol, 2000, 123(3):825-832. [13] 籍贵苏, 永路, 吕芃, 等. 不同高粱种质对污染土壤中重金属吸收的研究[J]. 中国生态农业学报, 2014, 22(2):185-192. [14] 张玉秀, 于飞, 张媛雅, 等. 植物对重金属镉的吸收转运和累积机制[J]. 中国生态农业学报, 2008(5):1317-1321. [15] Pan F, Luo S, Shen J, et al.The effects of endophytic bacterium SaMR12 on Sedum alfredii Hance metal ion uptake and the expression of three transporter family genes after cadmium exposure[J]. Environmental Science and Pollution Research, 2017, 24(10):9350-9360. [16] 董喜存. 碳离子束辐照诱导的甜高粱早熟突变体KTJT-1的田间评价[J]. IMP & amp;HIRFL Annual Report, 2009(0):127-128. [17] 马淑敏, 孙振钧, 王冲. 蚯蚓-甜高粱复合系统对土壤镉污染的修复作用及机理初探[J]. 农业环境科学学报, 2008(1):133-138. [18] 崔永行, 范仲学, 杜瑞雪, 等. 镉胁迫对甜高粱种子萌发的影响[J]. 华北农学报, 2008(S1):140-143. [19] An YJ.Soil ecotoxicity assessment using cadmium sensitive plants[J]. Environmental Pollution, 2004, 127(1):21-26. [20] Kuriakose SV, Prasad MNV.Cadmium stress affects seed germination and seedling growth in Sorghum bicolor(L.)Moench by changing the activities of hydrolyzing enzymes[J]. Plant Growth Regulation, 2008, 54(2):143-156. [21] Liu DL, Hu KQ, Ma JJ, et al.Effects of cadmium on the growth and physiological characteristics of sorghum plants[J]. African Journal of Biotechnology, 2011, 10(70):15770-15776. [22] 丁氏清茶. 甜高粱在重金属镉胁迫下的生理反应和基因鉴定[D]. 重庆:西南大学, 2016. [23] 林宇丰, 李魏, 戴良英. 抗氧化酶在植物抗旱过程中的功能研究进展[J]. 作物研究, 2015, 29(3):326-330. [24] Liu DL, Zhang SP, Zheng C, et al.Soil cadmium regulates antioxidases in sorghum[J]. Agricultural Sciences in China, 2010, 9(10):1475-1480. [25] Suzuki N, Koizumi N, Sano H.Screening of cadmium-responsive genes in Arabidopsis thaliana[J]. Plant, Cell & Environment, 2001, 24(11):1177-1188. [26] 马伊馨, 徐宗国, 陈春, 等. 镉胁迫下硫对甜高粱幼苗根系形态和生理特性的影响[J]. 延安大学学报:自然科学版, 2016, 35(4):84-88. [27] Soudek P, Petrová Š, Vaňková R, et al.Accumulation of heavy metals using Sorghum sp[J]. Chemosphere, 2014, 104:15-24. [28] Jia W, Lv S, Feng J, et al.Morphophysiological characteristic analysis demonstrated the potential of sweet sorghum(Sorghum bicolor(L.)Moench)in the phytoremediation of cadmium-contaminated soils[J]. Environmental Science and Pollution Research, 2016, 23(18):18823-18831. [29] Feng J, Jia W, Lv S, et al.Comparative transcriptome combined with morpho-physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes[J]. Plant Biotechnology Journal, 2017, 16:558-571. [30] Song WY, Choi KS, Geisler M, et al.Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport[J]. Plant Cell, 2010, 22(7):2237-2252. [31] Gendre D, Czernic P, Conéjéro G, et al.TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter[J]. Plant J, 2007, 49(1):1-15. [32] Wycisk K, Kim EJ, Schroeder JI, et al.Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana[J]. FEBS Letters, 2004, 578(1-2):128-134. [33] Gallego SM, Pena LB, Barcia RA, et al.Unravelling cadmium toxicity and tolerance in plants:Insight into regulatory mechanisms[J]. Environmental & Experimental Botany, 2012, 83(5):33-46. [34] Tong YP, Kneer R, Zhu YG.Vacuolar compartmentalization:a second-generation approach to engineering plants for phytoremediation[J]. Trends in Plant Science, 2004, 9(1):7-9. [35] Kabała K, Janicka-Russak M, Reda M, et al.Transcriptional regulation of the V-ATPase subunit c and V-PPase isoforms in Cucumis sativus under heavy metal stress[J]. Physiologia Plantarum, 2014, 150(1):32-45. [36] Emamverdian A, Ding Y, Mokhberdoran F, et al.Heavy metal stress and some mechanisms of plant defense response[J]. The Scientific World Journal, 2015, 2015:1-18. [37] Chen J, Yang L, Gu J, et al.MAN3 gene regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis thaliana[J]. New Phytol, 2015, 205(2):570-582. [38] He J, Li H, Ma C, et al.Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar[J]. New Phytol, 2015, 205(1):240-254. [39] Hundertmark M, Hincha DK.LEA(late embryogenesis abundant)proteins and their encoding genes in Arabidopsis thaliana[J]. BMC Genomics, 2008, 9(1):118. [40] Hu T, Zhu S, Tan L, et al.Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice(Oryza sativa L.)[J]. Environmental and Experimental Botany, 2016, 123:68-77. [41] Jia W, Miao F, Lv S, et al.Identification for the capability of Cd-tolerance, accumulation and translocation of 96 sorghum genotypes[J]. Ecotoxicology and Environmental Safety, 2017, 145:391-397. [42] Wu D, Yamaji N, Yamane M, et al.The HvNramp5 transporter mediates uptake of cadmium and manganese, but not iron[J]. Plant physiology, 2016, 172(3):1899-1910. [43] Tang L, Mao B, Li Y, et al.Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7(1):14438. [44] Roy SK, Cho SW, Kwon SJ, et al.Morpho-physiological and proteome level responses to cadmium stress in sorghum[J]. PLoS One, 2016, 11(2):1-27. [45] DalCorso G, Farinati S, Furini A. Regulatory networks of cadmium stress in plants[J]. Plant Signaling & Behavior, 2010, 5(6):663-667. [46] Manara A.Plant responses to heavy metal toxicity[M]// Plants and heavy metals. Italy:Dordrecht, 2012:27-53. [47] Sipos G, Solti Á, Czech V, et al.Heavy metal accumulation and tolerance of energy grass(Elymus elongatus subsp. ponticus cv. Szarvasi-1)grown in hydroponic culture[J]. Plant Physiol Biochem, 2013, 68:96-103. [48] Székely Á, Poór P, Bagi I, et al.Effect of EDTA on the growth and copper accumulation of sweet sorghum and sudangrass seedlings[J]. Acta Biologica Szeged, 2011, 55:159-164. [49] Plaza S, Tearall KL, Zhao FJ, et al.Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens[J]. J Exp Bot, 2007, 58(7):1717-1728. [50] Nevo Y, Nelson N.The NRAMP family of metal-ion transporters[J]. Biochimica et Biophysica Acta(BBA)-Molecular Cell Research, 2006, 1763(7):609-620. [51] Senoura T, Sakashita E, Kobayashi T, et al.The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains[J]. Plant Mol Biol, 2017, 95(4-5):375-387. [52] Williams LE, Mills RF.P1B-ATPases-an ancient family of transition metal pumps with diverse functions in plants[J]. Trends in Plant Science, 2005, 10(10):491-502. [53] Zeng L, Zhu T, Gao Y, et al.Effects of Ca addition on the uptake, translocation, and distribution of Cd in Arabidopsis thaliana[J]. Ecotoxicology and Environmental Safety, 2017, 139:228-237. [54] Lin YF, Aarts MGM.The molecular mechanism of zinc and cadmium stress response in plants[J]. Cellular and Molecular Life Sciences, 2012, 69(19):3187-3206. |
[1] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[2] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[3] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[4] | HUANG Jing, ZHU Liang, XUE Peng-bo, FU Qiang. Research on Mechanism and QTL Mapping Associated with Cadmium Accumulation in Rice Leaves and Grains [J]. Biotechnology Bulletin, 2022, 38(8): 118-126. |
[5] | XIN Jian-pan, LI Yan, ZHAO Chu, TIAN Ru-nan. Transcriptome Sequencing in the Leaves of Pontederia cordata with Cadmium Exposure and Gene Mining in Phenypropanoid Pathways [J]. Biotechnology Bulletin, 2022, 38(6): 198-210. |
[6] | HU Yan-jiao, CHEN Mei-feng, QIANG Yu, LI Hai-yan, LIU Jing, QIN Fan-xin. Alleviation Mechanisms of Zinc-selenium Interaction on the Cadmium Toxicity in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2022, 38(4): 143-152. |
[7] | ZU Guo-qiang, HU Zhe, WANG Qi, LI Guang-zhe, HAO Lin. Regulatory Role of Burkholderia sp. GD17 in Rice Seedling’s Responses to Cadmium Stress [J]. Biotechnology Bulletin, 2022, 38(4): 153-162. |
[8] | YANG Fu-rong, WANG Xiao-hong, XIAO Qi, FANG Juan, LI Li-hua. Physiological Response of Hibiscus syriacus Varieties to Cadmium Stress and Evaluation of Cadmium Tolerance [J]. Biotechnology Bulletin, 2022, 38(1): 98-107. |
[9] | CAO Ji-min, LI Shuang-cai, HE De. Transcriptome Analysis of Saliz matsudana Under Cadmium Stress [J]. Biotechnology Bulletin, 2020, 36(7): 32-39. |
[10] | WANG Zhu-cheng, LIU Hui, LI Rong-hua. Effects of Exogenous Sulfur on Photosynthetic Characteristics and Mineral Elements Absorption in Portulaca oleracea Under Cadmium Stress [J]. Biotechnology Bulletin, 2020, 36(3): 133-140. |
[11] | HAO Xiao-hua, DAI Jia-li, JI Wen-jin, HUANG Dan, LI Dong-ping, TIAN Lian-fu. Screening and Identification of LCD-interacting Proteins in Rice [J]. Biotechnology Bulletin, 2020, 36(11): 21-29. |
[12] | ZHANG Dan, WANG Nan, LI Chao, XIE Qi, TANG San-yuan. Sweet Sorghum—a High Efficient and Quality Forage Crop [J]. Biotechnology Bulletin, 2019, 35(5): 2-8. |
[13] | LENG Chuan-yuan, HAO Huai-qing, JING Hai-chun. Research Progress on the Stem Juiciness of Sweet Sorghum [J]. Biotechnology Bulletin, 2019, 35(5): 9-14. |
[14] | SONG Yu-shuang, SUI Na. Functional Analysis of FAD7 Gene in Sweet Sorghum [J]. Biotechnology Bulletin, 2019, 35(5): 35-41. |
[15] | LIU Jun-sheng, XIE Xiu-chao, LUO Yang-lan, DENG Bai-wan, BAI Qiu-yue, YAN Meng-chen, BAI Xing. Isolation,Identification,and Biological Characteristics of a Cadmium-Resistant Endophytic Bacteria Bacillus aryabhattai [J]. Biotechnology Bulletin, 2019, 35(2): 64-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||