Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (2): 54-65.doi: 10.13560/j.cnki.biotech.bull.1985.2017-1080
Previous Articles Next Articles
WANG Duan1,2, YAO Xiang-mei1, YE Jian1,2
Received:
2017-12-18
Online:
2018-02-26
Published:
2018-03-12
WANG Duan, YAO Xiang-mei, YE Jian. Research Progress on Multipartite Interactions Among Rhizosphere Microbe-Plants-Virus-Vector Insect[J]. Biotechnology Bulletin, 2018, 34(2): 54-65.
[1] Alazem M, Lin NS.Roles of plant hormones in the regulation of host-virus interactions[J]. Mol Plant Pathol, 2015, 16(5):529-540. [2] Zhou X.Advances in understanding begomovirus satellites[J]. Annu Rev Phytopathol, 2013, 51(1):357-381. [3] Luan JB, Wang YL, Wang J, et al.Detoxification activity and energy cost is attenuated in whiteflies feeding on Tomato yellow leaf curl China virus-infected tobacco plants[J]. Insect Mol Biol, 2013, 22(5):597-607. [4] Belliure B, Janssen A, Maris PC, et al.Herbivore arthropods benefit from vectoring plant viruses[J]. Ecology Letters, 2005, 8(1):70-79. [5] Li R, Weldegergis BT, Li J, et al. Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance[J]. Plant Cell, 2014, 10. 1105/tpc. 114. 133181. [6] Zhang T, Zhao YL, Zhao JH, et al.Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen[J]. Nature Plants, 2016, 2:16153. [7] Calil IP, Fontes EPB.Plant immunity against viruses:antiviral immune receptors in focus[J]. Ann Bot, 2017, 119(5):711-723. [8] Moon JY, Park JM.Cross-talk in viral defense signaling in plants[J]. Frontiers in Microbiology, 2016, 7:2068. [9] Lellis AD, Kasschau KD, et al.Loss-of-Susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection[J]. Curr Biol, 2002, 12(12):1046-1051. [10] Agius C, Eamens AL, Millar AA, et al.RNA Silencing and Antiviral Defense in Plants[M]//Watson JM, Wang MB. Antiviral Resistance in Plants:Methods and Protocols. London:Humana Press, 2012:17-38. [11] Csorba T, Kontra L, Burgyán J. viral silencing suppressors:Tools forged to fine-tune host-pathogen coexistence[J]. Virology, 2015, 479-480(Supplement C):85-103. [12] Duan CG, Fang YY, et al.Suppression of Arabidopsis ARGONAU-TE1-mediated slicing, transgene-induced RNA silencing, and DNA methylation by distinct domains of the Cucumber mosaic virus 2b protein[J]. Plant Cell, 2012, 24(1):259-274. [13] Brough CL, Gardiner WE, et al.DNA methylation inhibits propagation of tomato golden mosaic virus DNA in transfected protoplasts[J]. Plant Mol Biol, 1992, 18(4):703-712. [14] Raja P, Sanville BC, Buchmann RC, et al.Viral genome methylation as an epigenetic defense against geminiviruses[J]. Journal of Virology, 2008, 82(18):8997-9007. [15] Sun YW, Tee CS, Ma YH, et al.Attenuation of Histone Methyltransferase KRYPTONITE-mediated transcriptional gene silencing by Geminivirus[J]. Sci Rep, 2015, 5:16476. [16] Ye J, Yang J, Sun Y, et al.Geminivirus activates Asymmetric leaves 2 to accelerate cytoplasmic DCP2-Mediated mRNA turnover and weakens RNA silencing in Arabidopsis[J]. PLoS Pathogens, 2015, 11(10):e1005196. [17] Conti G, Zavallo D, Venturuzzi AL, et al.TMV induces RNA decay pathways to modulate gene silencing and disease symptoms[J]. The Plant Journal, 2017, 89(1):73-84. [18] Qu J, Ye J, Fang R.Artificial microRNA-mediated virus resistance in plants[J]. Journal of Virology, 2007, 81(12):6690-6699. [19] Ye J, Qu J, Mao HZ, et al.Engineering geminivirus resistance in Jatropha curcus[J]. Biotechnology for Biofuels, 2014, 7:149. [20] Li H, Ding X, Wang C, et al.Control of Tomato yellow leaf curl virus disease by Enterobacter asburiaeBQ9 as a result of priming plant resistance in tomatoes[J]. Turkish Journal of Biology, 2016, 40:150-159. [21] Abdalla OA, Bibi S, Zhang S.Application of plant growth-promoting rhizobacteria to control Papaya ringspot virus and Tomato chlorotic spot virus[J]. Archives of Phytopathology and Plant Protection, 2017, 50(11-12):584-597. [22] Reymond P, Weber H, Damond M, et al.Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis[J]. Plant Cell, 2000, 12(5):707. [23] Alborn HT, Turlings TCJ, Jones TH, et al.An elicitor of plant volatiles from beet armyworm oral secretion[J]. Science, 1997, 276(5314):945. [24] Schmelz EA, Carroll MJ, LeClere S, et al. Fragments of ATP synthase mediate plant perception of insect attack[J]. Proc Natl Acad Sci USA, 2006, 103(23):8894-8899. [25] Alborn HT, Hansen TV, Jones TH, et al.Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles[J]. Proc Natl Acad Sci USA, 2007, 104(32):12976-12981. [26] Mattiacci L, Dicke M, Posthumus MA. beta-Glucosidase:an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps[J]. Proc Natl Acad Sci USA, 1995, 92(6):2036-2040. [27] Guo H, Wielsch N, Hafke JB, et al.A porin-like protein from oral secretions of Spodoptera littoralis larvae induces defense-related early events in plant leaves[J]. Insect Biochemistry and Molecular Biology, 2013, 43(9):849-858. [28] Shinya T, Hojo Y, et al.Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice[J]. Sci Rep, 2016, 6:32537. [29] Wu J, Baldwin IT.New insights into plant responses to the attack from insect herbivores[J]. Annu Rev Genet, 2010, 44(1):1-24. [30] Eichenseer H, Mathews MC, Powell JS, et al.Survey of a salivary effector in caterpillars:glucose oxidase variation and correlation with host range[J]. J Chem Ecol, 2010, 36(8):885-897. [31] Harmel N, Letocart E, Cherqui A, et al.Identification of aphid salivary proteins:a proteomic investigation of Myzus persicae[J]. Insect Mol Biol, 2008, 17(2):165-174. [32] Wu S, Peiffer M, et al.ATP hydrolyzing salivary enzymes of caterpillars suppress plant defenses[J]. PLoS One, 2012, 7(7):e41947. [33] Stam JM, Kroes A, Li Y, et al.Plant interactions with multiple insect herbivores:from community to genes[J]. Annual Review of Plant Biology, 2014, 65:689-713. [34] De Vos M, Jander G.Myzus persicae(green peach aphid)salivary components induce defence responses in Arabidopsis thaliana[J]. Plant Cell Environ, 2009, 32(11):1548-1560. [35] Rodriguez PA, Stam R, Warbroek T, et al.Mp10 and Mp42 from the aphid species Myzus persicae trigger plant defenses in Nicotiana benthamiana through different activities[J]. Mol Plant Microbe Interact, 2014, 27(1):30-39. [36] Rodriguez PA, Escudero-Martinez C.An aphid effector targets trafficking protein VPS52 in a host-specific manner to promote virulence[J]. Plant Physiol, 2017, 173(3):1892-1903. [37] Elzinga DA, De Vos M, Jander G.Suppression of plant defenses by a Myzus persicae(green peach aphid)salivary effector protein [J]. Mol Plant Microbe Interact, 2014, 27(7):747-756. [38] Kettles GJ, Kaloshian I.The potato aphid salivary effector Me47 Is a glutathione-S-transferase involved in modifying plant responses to aphid infestation[J]. Frontiers in Plant Science, 2016, 7:1142. [39] Pitino M1 HS. Aphid Protein effectors promote aphid colonization in a plant species-specific manner[J]. Mol Plant Microbe Interact, 2013, 26(1):130-9. [40] Atamian HS, Chaudhary R, Cin VD, et al.In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity[J]. Mol Plant Microbe Interact, 2013, 26(1):67-74. [41] Naessens E, Dubreuil G, Giordanengo P, et al.A Secreted MIF cytokine enables aphid feeding and represses plant immune responses[J]. Curr Biol, 2015, 25(14):1898-1903. [42] Luan JB, Chen W, Hasegawa DK, et al.Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects[J]. Genome Biol Evol, 2015, 7(9):2635-2647. [43] Luan JB, Shan HW, Isermann P, et al.Cellular and molecular remodelling of a host cell for vertical transmission of bacterial symbionts[J]. Proc Biol Sci, 2016, 283(1833):20160580. [44] Vincent TR, Avramova M, Canham J, et al.Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during Aphid Feeding[J]. Plant Cell, 2017, 29(6):1460-1479. [45] Stafford CA, Walker GP, Ullman DE.Hitching a ride:Vector feeding and virus transmission[J]. Communicative & Integrative Biology, 2012, 5(1):43-49. [46] Whitfield AE, Falk BW, et al. Insect vector-mediated transmission of plant viruses[J]. Virology, 2015, 479-480:278-289. [47] Huo Y, Liu W, Zhang F, et al.Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector[J]. PLoS Pathogens, 2014, 10(3):e1003949. [48] Chen H, Chen Q, Omura T, et al.Sequential infection of Rice dwarf virus in the internal organs of its insect vector after ingestion of virus[J]. Virus Research, 2011, 160(1):389-394. [49] Chen Q, Wang H, Ren T, et al.Interaction between non-structural protein Pns10 of rice dwarf virus and cytoplasmic actin of leafhoppers is correlated with insect vector specificity[J]. J Gen Virol, 2015, 96(4):933-938. [50] Hajano JU, Wang B, Ren Y, et al.Quantification of southern rice black streaked dwarf virus and rice black streaked dwarf virus in the organs of their vector and nonvector insect over time[J]. Virus Research, 2015, 208:146-155. [51] Matsukura K, Towata T, Yoshida K, et al.Quantitative analysis of Southern rice black-streaked dwarf virus in Sogatella furcifera and Virus Threshold for Transmission[J]. Phytopathology, 2015, 105(4):550-554. [52] Pu L, Xie G, Ji C, et al.Transmission characteristics of Southern rice black-streaked dwarf virus by rice planthoppers[J]. Crop Protection, 2012, 41:71-76. [53] Wei J, He YZ, Guo Q, et al.Vector development and vitellogenin determine the transovarial transmission of begomoviruses[J]. Proc Natl Acad Sci USA, 2017, 114(26):6746-6751. [54] Zhang T, Luan JB, Qi JF, et al.Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor[J]. Mol Ecol, 2012, 21(5):1294-1304. [55] Jiu M, Zhou X-P, Tong L, et al.Vector-Virus Mutualism Accelera-tes Population Increase of an Invasive Whitefly[J]. PLoS One, 2007, 2(1):e182. [56] Yang JY, Iwasaki M, Machida C, et al.betaC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses[J]. Genes & Development, 2008, 22(18):2564-2577. [57] Li R, Weldegergis BT, Li J, et al.Virulence factors of geminivirus interact with MYC2 to subvert plant volatile-based resistance and promote vector performance[J]. Plant Cell, 2014, 26(12):4991-5008. [58] Casteel CL, Yang C, Nanduri AC, et al.The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae(green peach aphid)[J]. Plant J, 2014, 77(4):653-663. [59] Casteel C, De Alwis M, Bak A, et al.Disruption of ethylene responses by Turnip mosaic virus mediates suppression of plant defense against the aphid vector, Myzus persicae[J]. Plant Physiology, 2015, 169(1):209-218. [60] Wu D, Qi T, Li WX, et al.Viral effector protein manipulates host hormone signaling to attract insect vectors[J]. Cell Research, 2017, 27(3):402-415. [61] Abe H, Tomitaka Y, Shimoda T, et al.Antagonistic plant defense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus[J]. Plant & Cell Physiology, 2012, 53(1):204-212. [62] Carmo-Sousa M, Moreno A, et al.A non-persistently transmitted-virus induces a pull-push strategy in its aphid vector to optimize transmission and spread[J]. Virus Res, 2014, 186:38-46. [63] Mauck K, Bosque-Pérez NA, Eigenbrode SD, et al.Transmission mechanisms shape pathogen effects on host-vector interactions:evidence from plant viruses[J]. Functional Ecology, 2012, 26(5):1162-1175. [64] Ingwell LL, Eigenbrode SD, et al.Plant viruses alter insect behavior to enhance their spread[J]. Sci Rep, 2012, 2:578. [65] Jahan SMH, Lee G-S, Lee S, et al.Upregulation of probing- and feeding-related behavioural frequencies in Bemisia tabaci upon acquisition of Tomato yellow leaf curl virus[J]. Pest Management Science, 2014, 70(10):1497-1502. [66] Lu S, Li J, Wang X, et al.A Semipersistent plant virus differentially manipulates feeding behaviors of different sexes and biotypes of its whitefly vector[J]. Viruses, 2017, 9(1). [67] Stafford CA, Walker GP, Ullman DE.Infection with a plant virus modifies vector feeding behavior[J]. Proc Natl Acad Sci USA, 2011, 108(23):9350-9355. [68] Hiltner L.Uber neuere Erfahrungen und-Probleme ‘ auf dem Gebiete der Bodenbakteriologie unter besonderer Beriicksichtigung der Grundungung und Brache[J]. Arbeiten Deutsche Landwirtschaftsgesellschaft, 1904, 98:59-78. [69] Haichar FZ, Marol C, Berge O, et al.Plant host habitat and root exudates shape soil bacterial community structure[J]. The ISME Journal, 2008, 2(12):1221-1230. [70] Turner TR, Ramakrishnan K, Walshaw J, et al.Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants[J]. The ISME Journal, 2013, 7(12):2248-2258. [71] Peiffer JA, Spor A, Koren O, et al.Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proc Natl Acad Sci USA, 2013, 110(16):6548-6553. [72] Weinert N, Piceno Y, et al.PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars:many common and few cultivar-dependent taxa[J]. FEMS Microbiol Ecol, 2011, 75(3):497-506. [73] Sugiyama A, Ueda Y, Takase H, et al.Pyrosequencing assessment of rhizosphere fungal communities from a soybean field[J]. Canadian Journal of Microbiology, 2014, 60(10):687-690. [74] Carvalhais LC, Dennis PG, et al.Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities[J]. PLoS One, 2013, 8(2):e56457. [75] Badri DV, Chaparro JM, Zhang R, et al.Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome[J]. The Journal of Biological Chemistry, 2013, 288(7):4502-4512. [76] Mardukhi B, Rejali F, Daei G, et al.Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions[J]. Comptes Rendus Biologies, 2011, 334(7):564-571. [77] Saubidet MI, Fatta N, Barneix AJ.The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants[J]. Plant and Soil, 2002, 245(2):215-222. [78] Jiang Y, Wang W, Xie Q, et al.Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science, 2017, 356(6343):1172-1175. [79] de Santiago A, García-López AM, Quintero JM, et al. Effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in cucumber grown on calcareous soils[J]. Soil Biology and Biochemistry, 2013, 57:598-605. [80] Jin CW, He YF, Tang CX, et al.Mechanisms of microbially enhanced Fe acquisition in red clover(Trifolium pratense L.)[J]. Plant Cell Environ, 2006, 29(5):888-897. [81] Pii Y, Penn A, Terzano R, et al.Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants[J]. Plant Physiology and Biochemistry, 2015, 87(Supplement C):45-52. [82] Zamioudis C, Korteland J, Van Pelt JA, et al.Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses[J]. The Plant Journal, 2015, 84(2):309-322. [83] Mendes R, Garbeva P, Raaijmakers JM.The rhizosphere microbiome:significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS Microbiology Reviews, 2013, 37(5):634-663. [84] Aziz M, Nadipalli RK, Xie X, et al.Augmenting sulfur metabolism and herbivore defense in Arabidopsis by bacterial volatile signaling[J]. Frontiers in Plant Science, 2016, 7:458. [85] Hariprasad P, Chandrashekar S, et al.Mechanisms of plant growth promotion and disease suppression by Pseudomonas aeruginosa strain 2apa[J]. J Basic Microbiol, 2014, 54(8):792-801. [86] Raaijmakers JM, Paulitz TC, Steinberg C, et al.The rhizosphere:a playground and battlefield for soilborne pathogens and beneficial microorganisms[J]. Plant and Soil, 2008, 321(1-2):341-361. [87] Haldar S, Sengupta S.Plant-microbe cross-talk in the rhizosphere:insight and biotechnological potential[J]. The Open Microbiology Journal, 2015, 9:1-7. [88] Rudrappa T, Czymmek KJ, Paré PW, et al.Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology, 2008, 148(3):1547. [89] Lakshmanan V, Castaneda R, Rudrappa T, et al.Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux[J]. Planta, 2013, 238(4):657-668. [90] Liu Y, Zhang N, Qiu M, et al.Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection[J]. FEMS Microbiol Lett, 2014, 353(1):49-56. [91] Lebeis SL, Paredes SH, Lundberg DS, et al.PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa[J]. Science, 2015, 349(6250):860-864. [92] Muller DB, Vogel C, Bai Y, et al.The plant Microbiota:Systems-level insights and perspectives[J]. Annu Rev Genet, 2016, 50:211-234. [93] Jin T, Wang Y, Huang Y, et al.Taxonomic structure and functional association of foxtail millet root microbiome[J]. GigaScience, 2017, 6(10):1-12. |
[1] | LUO Xue-cong, AN Meng-nan, WU Yuan-hua, XIA Zi-hao. Applications of Recombinase Polymerase Amplification in Plant Virus Detection [J]. Biotechnology Bulletin, 2022, 38(2): 269-280. |
[2] | HU Ya-ping, ZHOU Xu, CHEN Shui-fei, GE Xiao-min, DING Hui. Effects of Plant Virus Infection on Biological Factors and Their Interactions in the Ecosystem [J]. Biotechnology Bulletin, 2019, 35(10): 180-188. |
[3] | CHI Hui-rong, MAO Bi-zeng. Research Advances on Plant Virus Detection and Virus-elimination Methods [J]. Biotechnology Bulletin, 2017, 33(8): 26-33. |
[4] | GUAN Gui-jing, ZHAO Heng-yan, WANG Hong-su, LIU Jin-xiang. Effects of Virus-Plant Interaction on Biological Characteristics of Insects as Vectors [J]. Biotechnology Bulletin, 2017, 33(4): 44-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||