Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (4): 51-59.doi: 10.13560/j.cnki.biotech.bull.1985.2017-1025
Previous Articles Next Articles
XIE Cheng-jian
Received:
2017-12-05
Online:
2018-04-20
Published:
2018-05-04
XIE Cheng-jian. Research Advances on Verticillium dahliae Genes Resulting in Pathogenicity and Microsclerotia Formation[J]. Biotechnology Bulletin, 2018, 34(4): 51-59.
[1] Maruthachalam K, Klosterman SJ, Kang S, et al.Identification of pathogenicity-related genes in the vascular wilt fungus Verticillium dahliae by Agrobacterium tumefaciens-mediated T-DNA insertional mutagenesis[J]. Mol Biotechnol, 2011, 49(3):209-221. [2] Fradin EF and Thomma BP. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum[J]. Mol Plant Pathol, 2006, 7(2):71-86. [3] Amyotte SG, Tan X, Pennerman K, et al.Transposable elements in phytopathogenic Verticillium spp. :insights into genome evolution and inter- and intra-specific diversification[J]. BMC Genomics, 2012, 13:314. [4] Rauyaree P, Ospina-Giraldo MD, Kang S, et al.Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae[J]. Curr Genet, 2005, 48(2):109-116. [5] Xie C, Wang C, Wang X, et al.Proteomics-based analysis reveals that Verticillium dahliae toxin induces cell death by modifying the synthesis of host proteins[J]. Journal of General Plant Pathology, 2013, 79(5):335-345. [6] Klosterman SJ, Subbarao KV, Kang S, et al.Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens[J]. PLoS Pathog, 2011, 7(7):e1002137. [7] Liu SY, Chen JY, Wang JL, et al.Molecular characterization and functional analysis of a specific secreted protein from highly virulent defoliating Verticillium dahliae[J]. Gene, 2013, 529(2):307-316. [8] Chen JY, Xiao HL, Gui YJ, et al.Characterization of the Verticillium dahliae exoproteome involves in pathogenicity from cotton-containing medium[J]. Front Microbiol, 2016, 7:1709. [9] Tzima AK, Paplomatas EJ, Rauyaree P, et al.VdSNF1, the sucrose nonfermenting protein kinase gene of Verticillium dahliae, is required for virulence and expression of genes involved in cell-wall degradation[J]. Mol Plant Microbe Interact, 2011, 24(1):129-142. [10] Eboigbe L, Tzima AK, Paplomatas EJ, et al.The role of the beta-1, 6-endoglucanase gene vegB in physiology and virulence of Verticillium dahliae[J]. Phytopathologia Mediterranea, 2014, 53(1):94-107. [11] Chen S, Su L, Chen J, et al.Cutinase:characteristics, preparation, and application[J]. Biotechnol Adv, 2013, 31(8):1754-67. [12] Gui Y, Zhang W, Zhang D, et al.A Verticillium dahliae extracellular cutinase modulates plant immune responses[J]. Mol Plant Microbe Interact, 208, 31(2):260-273. [13] Stergiopoulos I and de Wit P. Fungal effector proteins[J]. Annu Rev Phytopathol, 2009, 47:233-263. [14] de Jonge R, Bolton MD, Kombrink A, et al. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen[J]. Genome Res, 2013, 23(8):1271-1282. [15] de Jonge R, van Esse HP, Maruthachalam K, et al. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing[J]. Proc Natl Acad Sci USA, 2012, 109(13):5110-5115. [16] Zhang Z, van Esse HP, van Damme M, et al. Ve1-mediated resistance against Verticillium does not involve a hypersensitive response in Arabidopsis[J]. Molecular Plant Pathology, 2013, 14(7):719-727. [17] Castroverde CDM, Nazar RN, Robb J.Verticillium Ave1 effector induces tomato defense gene expression independent of Ve1 protein[J]. Plant Signaling & Behavior, 2016, 11(11):e1245254. [18] Kombrink A, Rovenich H, Shi-Kunne X, et al.Verticillium dahliae LysM effectors differentially contribute to virulence on plant hosts[J]. Molecular Plant Pathology, 2017, 18(4):596-608. [19] Zhang Y, Gao YH, Liang YB, et al.The Verticillium dahliae SnodProt1-Like Protein VdCP1 Contributes to Virulence and Triggers the Plant Immune System[J]. Frontiers in Plant Science, 2017, 8:1880. [20] Liu W, Zeng H, Liu Z, et al.Mutational analysis of the Verticillium dahliae protein elicitor PevD1 identifies distinctive regions responsible for hypersensitive response and systemic acquired resistance in tobacco[J]. Microbiol Res, 2014, 169(5-6):476-482. [21] Liu M, Khan NU, Wang N, et al.The protein elicitor PevD1 enhances resistance to pathogens and promotes growth in Arabidopsis[J]. Int J Biol Sci, 2016, 12(8):931-943. [22] Zhou R, Zhu T, Han L, et al.The asparagine-rich protein NRP interacts with the Verticillium effector PevD1 and regulates the subcellular localization of cryptochrome 2[J]. J Exp Bot, 2017, 68(13):3427-3440. [23] Liu T, Song T, Zhang X, et al.Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis[J]. Nat Commun, 2014, 5:4686. [24] Zhang L, Ni H, Du X, et al.The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections[J]. New Phytol, 2017, 215(1):368-381. [25] Wang JY, Cai Y, Gou JY, et al.VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting[J]. Appl Environ Microbiol, 2004, 70(8):4989-4995. [26] Yao Z, Rashid KY, Adam LR, et al.Verticillium dahliae’s VdNEP acts both as a plant defence elicitor and a pathogenicity factor in the interaction with Helianthus annuus[J]. Canadian Journal of Plant Pathology, 2011, 33(3):375-388. [27] Santhanam P, Esse PV, Albert I, et al.Evidence for functional diversification within a fungal NEP1-like protein family[J]. Mol Plant Microbe Interact, 2013, 26(3):278-286. [28] Zhou BJ, Jia PS, Gao F, et al.Molecular characterization and functional analysis of a necrosis- and ethylene-inducing, protein-encoding gene family from Verticillium dahliae[J]. Molecular Plant-Microbe Interactions, 2012, 25(7):964-975. [29] Zhao YL, Zhou TT, Guo HS.Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae[J]. PLoS Pathog, 2016, 12(7):e1005793. [30] Zhou TT, Zhao YL, Guo HS.Secretory proteins are delivered to the septin-organized penetration interface during root infection by Verticillium dahliae[J]. PLoS Pathog, 2017, 13(3):e1006275. [31] Tzima A, Paplomatas EJ, Rauyaree P, et al.Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen Verticillium dahliae[J]. Fungal Genet Biol, 2010, 47(5):406-415. [32] Tzima AK, Paplomatas EJ, Tsitsigiannis DI, et al.The G protein beta subunit controls virulence and multiple growth- and development-related traits in Verticillium dahliae[J]. Fungal Genet Biol, 2012, 49(4):271-283. [33] Wang FX, Ma YP, Yang CL, et al.Proteomic analysis of the sea-island cotton roots infected by wilt pathogen Verticillium dahliae[J]. Proteomics, 2011, 11(22):4296-4309. [34] Pantelides IS, Tjamos SE, Paplomatas EJ.Ethylene perception via ETR1 is required in Arabidopsis infection by Verticillium dahliae[J]. Molecular Plant Pathology, 2010, 11(2):191-202. [35] Deng S, Wang CY, Zhang X, et al.VdNUC-2, the Key Regulator of phosphate responsive signaling pathway, is required for Verticillium dahliae infection[J]. PLoS One, 2015, 10(12):e0145190. [36] Santhanam P, Boshoven JC, Salas O, et al.Rhamnose synthase activity is required for pathogenicity of the vascular wilt fungus Verticillium dahliae[J]. Mol Plant Pathol, 2017, 18(3):347-362. [37] Hoppenau CE, Tran V-T, Kusch H, et al.Verticillium dahliae VdTHI4, involved in thiazole biosynthesis, stress response and DNA repair functions, is required for vascular disease induction in tomato[J]. Environ Exp Bot, 2014, 108:14-22. [38] Qi X, Su X, Guo H, et al.VdThit, a thiamine transport protein, is required for pathogenicity of the vascular pathogen Verticillium dahliae[J]. Mol Plant Microbe Interact, 2016, 29(7):545-559. [39] Timpner C, Braus-Stromeyer S, Tran V, et al.The Cpc1 regulator of the cross-pathway control of amino acid biosynthesis is required for pathogenicity of the vascular pathogen Verticillium longisporum[J]. Mol Plant Microbe Interact, 2013, 26(11):1312-1324. [40] Van Twest SM, Grant SJ, Cucullo J, et al.Characterization of ATG8 autophagy gene homologs in Verticillium dahliae and Verticillium albo-atrum[J]. Phytopathology, 2011, 101(6):S251. [41] El Hadrami A, Islam MR, Adam LR, et al.A cupin domain-containing protein with a quercetinase activity(VdQase)regulates Verticillium dahliae’s pathogenicity and contributes to counteracting host defenses[J]. Front Plant Sci, 2015, 6:440. [42] Islam MR, Eihardami A, Adam LR, et al.A cupin domain containing protein(VdQase)is required for optimum virulence in Verticillium dahliae[J]. Canadian Journal of Plant Pathology, 2014, 36(2):267-268. [43] Tian H, Zhou L, Guo W, et al.Small GTPase Rac1 and its interaction partner Cla4 regulate polarized growth and pathogenicity in Verticillium dahliae[J]. Fungal Genet Biol, 2015, 74:21-31. [44] Qi X, Zhou S, Shang X, et al.VdSho1 Regulates Growth, Oxidant Adaptation and Virulence in Verticillium dahliae[J]. Journal of Phytopathology, 2016, 164(11-12):1064-1074. [45] Santhanam P and Thomma BP. Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes[J]. Mol Plant Microbe Interact, 2013, 26(2):249-256. [46] Fang Y, Xiong D, Tian L, et al.Functional characterization of two bZIP transcription factors in Verticillium dahliae[J]. Gene, 2017, 626:386-394. [47] Lopez-Escudero FJ, Roca JM, Valverde-Corredor A, et al.Correlation between virulence and morphological characteristics of microsclerotia of Verticillium dahliae isolates infecting olive[J]. Journal of Phytopathology, 2012, 160(7-8):431-433. [48] Wheeler MH, Tolmsoff WJ, Meola S.Ultrastructure of melanin formation in Verticillium-Dahliae with(+)-scytalone as a biosynthetic intermediate[J]. Canadian Journal of Microbiology, 1976, 22(5):702-711. [49] Griffiths DA.The fine structure of developing microsclerotia of Verticillium dahliae Kleb[J]. Archiv für Mikrobiologie, 1970, 74(3):207-212. [50] Brown MF, Wyllie TD.Ultrastructure of microsclerotia of Vertici-llium alboatrum[J]. Phytopathology, 1970, 60:538-542. [51] Neumann MJ, Dobinson KF.Sequence tag analysis of gene expre-ssion during pathogenic growth and microsclerotia development in the vascular wilt pathogen Verticillium dahliae[J]. Fungal Genet Biol, 2003, 38(1):54-62. [52] Fan R, Klosterman SJ, Wang C, et al.Vayg1 is required for microsclerotium formation and melanin production in Verticillium dahliae[J]. Fungal Genet Biol, 2017, 98:1-11. [53] Xiong DG, Wang YL, Ma J, et al.Deep mRNA sequencing reveals stage-specific transcriptome alterations during microsclerotia development in the smoke tree vascular wilt pathogen, Verticillium dahliae[J]. BMC Genomics, 2014, 15:324. [54] Zhang T, Zhang BS, Hua CL, et al.VdPKS1 is required for melanin formation and virulence in a cotton wilt pathogen Verticillium dahliae[J]. Science China-Life Sciences, 2017, 60(8):868-879. [55] Luo X, Mao H, Wei Y, et al.The fungal-specific transcription factor Vdpf influences conidia production, melanized microsclerotia formation and pathogenicity in Verticillium dahliae[J]. Molecular Plant Pathology, 2016, 17(9):1364-1381. [56] Bell A, Puhalla J, Tolmsoff W, et al.Use of mutants to establish(+)-scytalone as an intermediate in melanin biosynthesis by Verticillium dahliae[J]. Canadian Journal of Microbiology, 1976, 22(6):787-799. [57] Duressa D, Anchieta A, Chen D, et al.RNA-seq analyses of gene expression in the microsclerotia of Verticillium dahliae[J]. BMC Genomics, 2013, 14:607. [58] Xiong DG, Wang YL, Tian LY, et al.MADS-Box Transcription Factor VdMcm1 Regulates Conidiation, Microsclerotia Formation, Pathogenicity, and Secondary Metabolism of Verticillium dahliae[J]. Frontiers in Microbiology, 2016, 7:1192. [59] Sarmiento-Villamil JL, García-Pedrajas NE, Baeza-Montañez L, et al.The APSES transcription factor Vst1 is a key regulator of development in microsclerotium and resting mycelium producing Verticillium species[J]. Molecular Plant Pathology, 2016, 19(1):59-76. [60] Xiong D, Wang Y, Tang C, et al.VdCrz1 is involved in microsclerotia formation and required for full virulence in Verticillium dahliae[J]. Fungal Genet Biol, 2015, 82:201-212. [61] Tran VT, Braus-Stromeyer SA, Kusch H, et al.Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots[J]. New Phytol, 2014, 202(2):565-581. [62] Papapostolou I, Georgiou CD.Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi[J]. Appl Microbiol, 2010, 109(6):1929-1936. [63] Liu J, Yin Y, Song Z, et al.NADH:flavin oxidoreductase/NADH oxidase and ROS regulate microsclerotium development in Nomuraea rileyi[J]. World J Microbiol Biotechnol, 2014, 30(7):1927-1935. [64] Song Z, Yin Y, Jiang S, et al.Comparative transcriptome analysis of microsclerotia development in Nomuraea rileyi[J]. BMC Genomics, 2013, 14(1):411. [65] Xiao X, Xie J, Cheng J, et al.Novel secretory protein Ss-Caf1 of the plant-pathogenic fungus Sclerotinia sclerotiorum is required for host penetration and normal sclerotial development[J]. Mol Plant Microbe Interact, 2014, 27(1):40-55. [66] Yu Y, Jiang D, Xie J, et al.Ss-Sl2, a novel cell wall protein with PAN modules, is essential for sclerotial development and cellular integrity of Sclerotinia sclerotiorum[J]. PLoS One, 2012, 7(4):e34962. [67] O’Rourke SM, Herskowitz I. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis[J]. Molecular Biology of the Cell, 2004, 15(2):532-542. [68] Boisnard S, Ruprich-Robert G, Florent M, et al.Role of Sho1p adaptor in the pseudohyphal development, drugs sensitivity, osmotolerance and oxidant stress adaptation in the opportunistic yeast Candida lusitaniae[J]. Yeast, 2008, 25(11):849-859. [69] Song Z, Shen L, Yin Y, et al.Role of two Nomuraea rileyi transmembrane sensors Sho1p and Sln1p in adaptation to stress due to changing culture conditions during microsclerotia development[J]. World J Microbiol Biotechnol, 2015, 31(3):477-485. [70] Brewster JL, Devaloir T, Dwyer ND, et al.An osmosensing signal transduction pathway in yeast[J]. Science, 1993, 259(5102):1760-1763. [71] Tian L, Xu J, Zhou L, et al.VdMsb regulates virulence and microsclerotia production in the fungal plant pathogen Verticillium dahliae[J]. Gene, 2014, 550(2):238-244. [72] Wang YL, Tian LY, Xiong DG, et al.The mitogen-activated protein kinase gene, VdHog1, regulates osmotic stress response, microsclerotia formation and virulence in Verticillium dahliae[J]. Fungal Genet Biol, 2016, 88:13-23. [73] Tian LY, Wang YL, Yu J, et al.The mitogen-activated protein kinase kinase VdPbs2 of Verticillium dahliae regulates microsclerotia formation, stress response, and plant infection[J]. Frontiers in Microbiology, 2016, 7:1532. [74] Chen C, Harel A, Gorovoits R, et al.MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and cAMP sensing[J]. Mol Plant Microbe Interact, 2004, 17(4):404-413. [75] Bashi ZD, Gyawali S, Bekkaoui D, et al.The Sclerotinia sclerotiorum Slt2 mitogen-activated protein kinase ortholog, SMK3, is required for infection initiation but not lesion expansion[J]. Can J Microbiol, 2016, 62(10):836-850. [76] Song ZY, Zhong Q, Yin YP, et al.The high osmotic response and cell wall integrity pathways cooperate to regulate morphology, microsclerotia development, and virulence in Metarhizium rileyi[J]. Scientific Reports, 2016, 6:38765. [77] He XJ, Li XL and Li YZ. Disruption of Cerevisin via Agrobacterium tumefaciens-mediated transformation affects microsclerotia formation and virulence of Verticillium dahliae[J]. Plant Pathology, 2015, 64(5):1157-1167. [78] Xie C, Li Q, Yang X.Characterization of VdASP F2 secretory factor from Verticillium dahliae by a fast and easy gene knockout system[J]. Mol Plant Microbe Interact, 2017, 30(6):444-454. [79] Tang C, Xiong D, Fang Y, et al.The two-component response regulator VdSkn7 plays key roles in microsclerotial development, stress resistance and virulence of Verticillium dahliae[J]. Fungal Genet Biol, 2017, 108:26-35. [80] Gao F, Zhou BJ, Li GY, et al.A glutamic acid-rich protein identified in Verticillium dahliae from an insertional mutagenesis affects microsclerotial formation and pathogenicity[J]. PLoS One, 2010, 5(12):e15319. [81] Klimes A, Dobinson KF.A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen Verticillium dahliae[J]. Fungal Genet Biol, 2006, 43 (4):283-294. [82] Klimes A, Amyotte SG, Grant S, et al.Microsclerotia development in Verticillium dahliae:Regulation and differential expression of the hydrophobin gene VDH1[J]. Fungal Genet Biol, 2008, 45(12):1525-1532. [83] Wang L, Wu SM, Zhu Y, et al.Functional characterization of a novel jasmonate ZIM-domain interactor(NINJA)from upland cotton(Gossypium hirsutum)[J]. Plant Physiol Biochem, 2017, 112:152-160. [84] Li ZF, Liu YJ, Feng ZL, et al.VdCYC8, encoding CYC8 glucose repression mediator protein, is required for microsclerotia formation and full virulence in Verticillium dahliae[J]. PLoS One, 2015, 10(12):e0144020. [85] Zhang YL, Mao JC, Huang JF, et al.A uracil-DNA glycosylase functions in spore development and pathogenicity of Verticillium dahliae[J]. Physiological and Molecular Plant Pathology, 2015, 92:148-153. [86] Zhang YL, Li ZF, Feng ZL, et al.Functional analysis of the pathogenicity-related gene VdPR1 in the vascular wilt fungus Verticillium dahliae[J]. PLoS One, 2016, 11(11):e0166000. [87] Zhang YL, Li ZF, Feng ZL, et al.Isolation and functional analysis of the pathogenicity-related gene VdPR3 from Verticillium dahliae on cotton[J]. Curr Genet, 2015, 61(4):555-566. [88] Yuan L, Su Y, Zhou S, et al.A RACK1-like protein regulates hyphal morphogenesis, root entry and in vivo virulence in Verticillium dahliae[J]. Fungal Genet Biol, 2017, 99:52-61. [89] Sperschneider J, Gardiner DM, Dodds PN, et al.EffectorP:predicting fungal effector proteins from secretomes using machine learning[J]. New Phytol, 2016, 210(2):743-761. |
[1] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[2] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[3] | PAN Guo-qiang, WU Si-yuan, LIU Lu, GUO Hui-ming, CHENG Hong-mei, SU Xiao-feng. Construction and Preliminary Analysis of Verticillim dahliae Mutant Library [J]. Biotechnology Bulletin, 2023, 39(5): 112-119. |
[4] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[5] | QI Fang-ting, HUANG He. Research Advance in the Regulation Mechanism of Flower Spots Formation in Ornamental Plant [J]. Biotechnology Bulletin, 2023, 39(10): 17-28. |
[6] | JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor [J]. Biotechnology Bulletin, 2023, 39(1): 84-94. |
[7] | LIU Zi-ran, ZHEN Zhen, CHEN Qiang, LI Yue-ying, WANG Ze, PANG Hong-bo. Research Progress in Plant Response to Cd Stress [J]. Biotechnology Bulletin, 2022, 38(6): 13-26. |
[8] | LEI Chun-xia, LI Can-hui, CHEN Yong-kun, GONG Ming. Physiological and Biochemical Basis and Molecular Mechanism of Solanum tuberosum Tuberization [J]. Biotechnology Bulletin, 2022, 38(4): 44-57. |
[9] | TIAN Li, LI Jun-jiao, DAI Xiao-feng, ZHANG Dan-dan, CHEN Jie-yin. From Functional Genes to Biological Characteristics:The Molecular Basis of Pathogenicity in Verticillium dahliae [J]. Biotechnology Bulletin, 2022, 38(1): 51-69. |
[10] | LI Qian, JIANG Wen-bo, WANG Yu-xiang, ZHANG Bo, PANG Yong-zhen. Research Progresses on the Drought Resistance of Medicago at Molecular Level [J]. Biotechnology Bulletin, 2021, 37(8): 243-252. |
[11] | LIU Hai-guang, LUO Zhen, DONG He-zhong. Research Progress on the Regulation of NO3- Uptake and Transport in Plant [J]. Biotechnology Bulletin, 2021, 37(6): 192-201. |
[12] | FENG Lian-jie, AN Wen-jing, LIU Di, LIU Ya-fei, WANG Kai-jie, LIANG Wei-hong. Progress in Research of Rice Trichome Related Genes [J]. Biotechnology Bulletin, 2021, 37(6): 236-243. |
[13] | WU Qi-man, ZHANG Jin-mei, LI Yue-ying, ZHANG Ying. Recent Advances on the Mechanism of Beneficial Microbial Fertilizers in Crops [J]. Biotechnology Bulletin, 2021, 37(5): 221-230. |
[14] | FU Yan-song, LI Yu-cong, XU Zhi-hui, SHAO Jia-hui, LIU Yun-peng, XUAN Wei, ZHANG Rui-fu. Research Progressing in Signals and Molecular Mechanisms of Plant Growth-Promoting Rhizobacteria to Regulate Plant Root Development [J]. Biotechnology Bulletin, 2020, 36(9): 42-48. |
[15] | GONG Wei, YU Jian-yuan, ZHANG Xi, SHAN Xiao-yi. Research Progress on Molecular Mechanisms of Nitrate-regulated Plant Flowering and Yield [J]. Biotechnology Bulletin, 2020, 36(8): 162-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||