Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (10): 189-197.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0860
Previous Articles Next Articles
JIANG Huan-huan1, 2, WANG Tong1, CHEN Na1, YU Shan-lin1, CHI Xiao-yuan1, WANG Mian1, QI Pei-shi2, 3
Received:
2018-10-07
Online:
2019-10-26
Published:
2019-09-30
JIANG Huan-huan, WANG Tong, CHEN Na, YU Shan-lin, CHI Xiao-yuan, WANG Mian, QI Pei-shi. Research Progress in PGPR Improving Plant's Resistance to Salt and Alkali[J]. Biotechnology Bulletin, 2019, 35(10): 189-197.
[1] Godfray HC, Beddington JR, Crute IR, et al.Food security:the challenge of feeding 9 billion people[J]. Science, 2010, 327(5967):812. [2] 井大炜, 马海林, 刘方春, 等. 盐胁迫环境下接种根际促生细菌对白蜡树根际生物学特征及其生长的影响[J]. 水土保持通报, 2018, 38(1):76-81. [3] Vimal SR, Singh JS, Arora NK, et al.Soil-plant-microbe interactions in stressed agriculture management:A review[J]. Pedosphere, 2017, 27(2):177-192. [4] 刘丹丹, 李敏, 刘润进. 我国植物根围促生细菌研究进展[J]. 生态学杂志, 2016, 35(3):815-824. [5] Burr TJ, Scroth MN, Suslow T.Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas-fluororescens and Pseudomonas-putida[J]. Phytopathology, 1978, 68(9):1377-1383. [6] Gray EJ, Smith DL.Intracellular and extracellular PGPR:commonalities and distinctions in the plant-bacterium signaling processes[J]. Soil Biology and Biochemistry, 2005, 37(3):395-412. [7] Prashar P, Kapoor N, Sachdeva S.Rhizosphere:its structure, bacterial diversity and significance[J]. Reviews in Environmental Science & Biotechnology, 2014, 13(1):63-77. [8] Beneduzi A, Ambrosini A, Passaglia LM.Plant growth-promoting rhizobacteria(PGPR):Their potential as antagonists and biocontrol agents[J]. Genetics & Molecular Biology, 2012, 35(4):1044-1051. [9] Marulanda A, Azcón R, Chaumont F, et al.Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize(Zea mays L.)plants under unstressed and salt-stressed conditions[J]. Planta, 2010, 232(2):533-543. [10] Forni C, Duca D, Glick BR.Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria[J]. Plant & Soil, 2017, 410(1/2):335-356. [11] Giongo A, Ambrosini A, Vargas LK, et al.Evaluation of genetic diversity of Bradyrhizobia strains nodulating soybean[Glycine max(L.)Merrill]isolated from South Brazilian fields[J]. Applied Soil Ecology, 2008, 38(3):261-269. [12] Upadhyay SK, Singh DP, Saikia R.Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition[J]. Current Microbiology, 2009, 59(5):489. [13] Etesami H, Beattie GA.Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions[M]//Probiotics and plant health. Springer Singapore:Springer Nature Singapore Pte Ltd, 2017. [14] Ruppel S, Franken P, Witzel K.Properties of the halophyte microbiome and their implications for plant salt tolerance[J]. Functional Plant Biology, 2013, 40(8/9):3113-3116. [15] Patel S, Naik JH, Amaresan N.Isolation and characterization of drought resistance bacteria for plant growth promoting properties and their effect on chilli(Capsicum annuum)seedling under salt stress[J]. Biocatalysis & Agricultural Biotechnology, 2017, 12:85-89. [16] Zhu F, Qu L, Hong X, et al.Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China[J]. Evid Based Complement Alternat Med, 2011. doi:org/10. 1155/2011/615032. [17] Etesami H, Beattie GA.Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops[J]. Frontiers in Microbiology, 2018, 9:148. [18] Boukhatem ZF, Domergue O, Bekki A, et al.Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria[J]. FEMS Microbiology Ecology, 2012, 80(3):534-547. [19] 朱健康, 倪建平. 植物非生物胁迫信号转导及应答[J]. 中国稻米, 2016, 22(6):52-60. [20] Dodd IC, Pérezalfocea F.Microbial amelioration of crop salinity stress[J]. J Exp Bot, 2012, 63(9):3415-3428. [21] Boiero L, Perrig D, Masciarelli O, et al.Phytohormone production by three strains of Bradyrhizobium japonicum possible physiological and technological implications[J]. Applied Microbiology & Biotechnology, 2007, 74(4):874-880. [22] Kuklinsky S, Araujo WL, Mendes R, et al.Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion[J]. Environmental Microbiology, 2004, 6(12):1244-1251. [23] Li H, Lei P, Pang X, et al.Enhanced tolerance to salt stress in canola(Brassica napus L.)seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4[J]. Appl Soil Ecol, 2017, 119:26-34. [24] Krome K, Rosenberg K, Dickler C, et al.Soil bacteria and protozoa affect root branching via effects on the auxin and cytokinin balance in plants[J]. Plant & Soil, 2010, 328(1/2):191-201. [25] 陈伟立, 李娟, 朱红惠, 等. 根际微生物调控植物根系构型研究进展[J]. 生态学报, 2016, 36(17):5285-5297. [26] Patten CL, Glick BR.Role of Pseudomonas putida indoleacetic acid in development of the host plant root system[J]. Appl Environ Microbiol, 2002, 68(8):3795-3801. [27] 王宝山, 邹琦. 质膜转运蛋白及其与植物耐盐性关系研究进展[J]. 植物学报, 2000, 17(1):17-26. [28] Dodd IC.Hormonal interactions and stomatal responses[J]. Journal of Plant Growth Regulation, 2003, 22(1):32-46. [29] Zhou C, Li F, Xie Y, et al.Involvement of abscisic acid in microbe-induced saline-alkaline resistance in plants[J]. Plant Signal Behav, 2017, 12(10):e1367465. [30] Zhou C, Zhu L, Xie Y, et al.Bacillus licheniformis SA03 confers increased saline-alkaline tolerance in chrysanthemum plants by induction of abscisic acid accumulation[J]. Front Plant Sci, 2017, 8:143. [31] Thakur M, Sharma AD.Salt-stress-induced proline accumulation in germinating embryos:Evidence suggesting a role of proline in seed germination[J]. Journal of Arid Environments, 2005, 62(3):517-523. [32] Jiang F, Chen L, Belimov AA, et al.Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum Sativum[J]. J Exp Bot, 2012, 63(18):6421-6430. [33] Belimov AA, Dodd IC, Safronova VI, et al.Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth[J]. Plant Physiology & Biochemistry, 2014, 74:84-91. [34] Radhakrishnan R, Khan AL, Kang SM, et al.A comparative study of phosphate solubilization and the host plant growth promotion ability of Fusarium verticillioides, RK01 and Humicola, sp. KNU01 under salt stress[J]. Annals of Microbiology, 2015, 65(1):585-593. [35] Khan AL, Hamayun M, Ahmad N, et al.Salinity stress resistance offered by endophytic fungal interaction between Penicillium minioluteum LHL09 and Glycine max. L.[J]. J Microbiol Biotechnol, 2011, 21(9):893-902. [36] Porcel R, Aroca R.Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants[J]. BMC Plant Biology, 2014, 14(1):36. [37] Lee KE, Radhakrishnan R, Kang SM, et al.Enterococcus faecium LKE12 cell-free extract accelerates host plant growth via gibberellin and indole-3-acetic acid secretion[J]. Journal of Microbiology Biotechnology, 2015, 25(9):1467-1475. [38] Siddiqui MH, Khan MN, Mohammad F, et al.Role of nitrogen and gibberellin(GA3)in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress[J]. J Agronomy Crop Sci, 2008, 194(3):214-224. [39] O’Brien JA, Benková E. Cytokinin cross-talking during biotic and abiotic stress responses[J]. Front Plant Sci, 2013, 4(1):451. [40] 刘方春, 马海林, 杜振宇, 等. 金银花容器苗对干旱胁迫下接种根际促生细菌的生理响应[J]. 生态学报, 2015, 35(21):7003-7010. [41] Saleem M, Arshad M, Hussain S, et al.Perspective of plant growth promoting rhizobacteria(PGPR)containing ACC deaminase in stress agriculture[J]. Journal of Industrial Microbiology & Biotechnology, 2007, 34(10):635. [42] Elena S, Saleh S, Bernardr G.Growth of transgenic canola(Brassica napus cv. Westar)expressing a bacterial1-aminocyclopropane-1-carboxylate(ACC)deaminase gene on high concentrations of salt[J]. World J Microbiol Biotechnol, 2006, 22(3):277-282. [43] Soh BY, Lee GW, Go EB, et al.1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas fluorescens promoting the growth of Chinese cabbage and its polyclonal antibody[J]. Journal of Microbiology Biotechnology, 2014, 24(5):690-695. [44] Ali S, Charles TC, Glick BR.Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase[J]. Plant Physiology & Biochemistry, 2014, 80:160-167. [45] Wang W, Wu Z, He Y, et al.Plant growth promotion and alleviation of salinity stress in Capsicum annuum L. by Bacillus isolated from saline soil in Xinjiang[J]. Ecotoxicology & Environmental Safety, 2018, 164:520. [46] 许芳芳, 袁立敏, 邵玉芳, 等. 肠杆菌FYP1101对盐胁迫下小麦幼苗的促生效应[J]. 微生物学通报, 2018, 45(1):102-110. [47] Cheng Z, Park E, Glick BR.1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt[J]. Canadian Journal of Microbiology, 2007, 53(7):912-918. [48] Saravanakumar D, Samiyappan R.ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut(Arachis hypogea)plants[J]. Journal of Applied Microbiology, 2010, 102(5):1283-1292. [49] Li Z, Chang S, Ye S, et al. Differentiation of 1-aminocyclopropane-1-carboxylate(ACC)deaminase from its homologs is the key for identifying bacteria containing ACC deaminase[J]. FEMS Microbiology Ecology, 2015, 91(10):fiv112. [50] Rasool S, Ahmad A, Siddiqi TO, et al.Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress[J]. Acta Physiologiae Plantarum, 2013, 35(4):1039-1050. [51] Meloni DA, Oliva MA, Martinez CA, et al.Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress[J]. Environmental & Experimental Botany, 2003, 49(49):69-76. [52] Abdelkrim S, Jebara SH, Jebara, M, et al.Antioxidant systems responses and the compatible solutes as contributing factors to lead accumulation and tolerance in Lathyrus sativus inoculated by plant growth promoting rhizobacteria[J]. Ecotoxicology and Environment Safety, 2018, 166:427-436. [53] 郑娜, 柯林峰, 杨景艳, 等. 来源于污染土壤的植物根际促生细菌对番茄幼苗的促生与盐耐受机制[J]. 应用与环境生物学报, 2018, 24(1):47-52. [54] Sukweenadhi J, Kim YJ, Choi ES, et al.Paenibacillus yonginensis DCY84(T)induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress[J]. Microbiological Research, 2015, 172:7-15. [55] Latef A, Hamed AA, He CX.Does inoculation with Glomus mosseae improve salt tolerance in pepper plants?[J]. Journal of Plant Growth Regulation, 2014, 33(3):644-653. [56] Egamberdieva D, Li L, Lindström K, et al.A synergistic interaction between salt-tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice(Glycyrrhiza uralensis Fish. )under salt stress[J]. Applied Microbiology & Biotechnology, 2016, 100(6):2829-2841. [57] De Lacerda CF, Cambraia J, Oliva MA, et al.Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress[J]. Environmental and Experimental Botany, 2003, 49:107-112. [58] 吴志勇, 李由然, 顾正华, 等. 枯草芽孢杆菌L-脯氨酸合成途径中glnA、proB、proA基因功能探究[J]. 微生物学报, 2018 (1):39-50. [59] Chen M, Wei H, Cao J, et al.Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis[J]. Journal of Biochemistry & Molecular Biology, 2007, 40(3):396-403. [60] Yasin NA, Akram W, Khan WU, et al.Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L.[J]. Environmental Science & Pollution Research, 2018, 25(25):23236-23250. [61] Zhang LH, Zhao YM.Effect of different kinds of growth-promoting rhizobacteria on physiological and biochemical characteristics of Medicago sative Linn. seedlings under the stress of Na2CO3[J]. Agricultural Science & Technology, 2010, 11(6):18045-18047. [62] Niu SQ, Li HR, Paré PW, et al.Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria[J]. Plant Soil, 2016, 407(1/2):1-14. [63] Qurashi AW, Sabri AN.Osmolyte accumulation inmoderately halophilic bacteria improves salt tolerance of chickpea[J]. Pak J Bot, 2013, 45:1011-1016. [64] Ashraf M, Hasnain S, Berge O, et al.Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress[J]. Biology and Fertility of Soils, 2004, 40(3):157-162. [65] Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, et al.Effect of inoculation with plant growth-promoting bacteria(PGPB)on amelioration of saline stress in maize(Zea mays)[J]. Applied Soil Ecology, 2012, 61(5):264-272. [66] 上官王丽. 产胞外多糖细菌多样性及其对土壤团聚体形成作用的研究[D]. 南京:南京农业大学, 2013. [67] Bailly A, Weisskopf L.The modulating effect of bacterial volatiles on plant growth[J]. Plant Signal Behav, 2012, 7(7):79-85. [68] Zhang H, Kim MS, Yan S, et al.Soil Bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1[J]. Mol Plant Microbe Interact, 2008, 21(6):737-744. [69] Vaishnav A, Kumari S, Jain S, et al.Putative bacterial volatile-mediated growth in soybean(Glycine max L. Merrill)and expression of induced proteins under salt stress[J]. Journal of Applied Microbiology, 2015, 119(2):539-551. [70] Bhattacharyya D, Yu SM, Yong HL.Volatile compounds from Alcaligenes faecalis JBCS1294 confer salt tolerance in Arabidopsis thaliana through the auxin and gibberellin pathways and differential modulation of gene expression in root and shoot tissues[J]. Plant Growth Regulation, 2015, 75(1):297-306. [71] Lata C, Prasad M.Role of DREBs in regulation of abiotic stress responses in plants[J]. J Exp Bot, 2011, 62(14):4731-4748. [72] Barnawal D, Bharti N, Pandey SS, et al.Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression[J]. Physiology Plant, 2017, 161(4):502-514. [73] Banaei-Asl F, Bandehagh A, Uliaei ED, et al.Proteomic analysis of canola root inoculated with bacteria under salt stress[J]. Journal of Proteomics, 2015, 124:88-111. [74] Gond SK, Torres MS, Bergen MS, et al.Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans[J]. Letters in Applied Microbiology, 2015, 60(4):392-399. |
[1] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[2] | ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation [J]. Biotechnology Bulletin, 2023, 39(8): 106-113. |
[3] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[4] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[5] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[6] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[7] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[8] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[9] | ZHANG Yong, XU Tian-jun, LYU Tian-fang, XING Jin-feng, LIU Hong-wei, CAI Wan-tao, LIU Yue-e, ZHAO Jiu-ran, WANG Rong-huan. Effects of Planting Density on the Stem Quality and Root Phenotypic Characters of Summer Sowing Maize [J]. Biotechnology Bulletin, 2023, 39(8): 70-79. |
[10] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[11] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[12] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[13] | XU Jian-xia, DING Yan-qing, FENG Zhou, CAO Ning, CHENG Bin, GAO Xu, ZOU Gui-hua, ZHANG Li-yi. QTL Mapping of Sorghum Plant Height and Internode Numbers Based on Super-GBS Technique [J]. Biotechnology Bulletin, 2023, 39(7): 185-194. |
[14] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[15] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||