Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (9): 11-20.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0158
Previous Articles Next Articles
ZHANG Jia-shun1,2, GAO Li-li3, MA Jiang-shan1,2, LIU Gao-qiang1,2
Received:
2019-02-27
Online:
2019-09-26
Published:
2019-09-16
ZHANG Jia-shun, GAO Li-li, MA Jiang-shan, LIU Gao-qiang. Effect of Surfactant on Cellulase Hydrolysis and Its Mechanism[J]. Biotechnology Bulletin, 2019, 35(9): 11-20.
[1] Himmel ME, Ding SY, Johnson DK, et al.Biomass recalcitrance:engineering plants and enzymes for biofuels production[J]. Science, 2007, 315(5813):804-807. [2] Sindhu R, Binod P, Panden A, et al.Biological pretreatment of lignocellulosic biomass-an overview[J]. Bioresource Technology, 2016, 199:76-82. [3] Rocha-Martin J, Martinez-Bernal C, Perez-Cobas Y, et al.Additives enhancing enzymatic hydrolysis of lignocellulosic biomass[J]. Bioresource Technology, 2017, 244(Pt 1):48-56. [4] Chakraborty R, Chatterjee S, Mukhopadhyay P, et al.Progresses in waste biomass derived catalyst for production of biodiesel and bioethanol:a review[J]. Procedia Environmental Sciences, 2016, 35:46-554. [5] Xing Y, Bu L, Sun D, et al.Enhancement of high-solids enzymatic hydrolysis and fermentation of furfural residues by addition of Gleditsia saponin[J]. Fuel, 2016, 177:142-147. [6] Pennacchio A, Ventorino V, Cimini D.Isolation of new cellulase and xylanase producing strains and application to lignocellulosic biomasses hydrolysis and succinic acid production[J]. Bioresource Technology, 2018, 259:325-333. [7] Makhuvele R, Ncube I, Rensburg ELJ, et al.Isolation of fungi from dung of wild herbivores for application in bioethanol production[J]. Brazilian Journal of Microbiology, 2017, 48(4):648-655. [8] Kuhad RC, Deswal D, Sharma S, et al.Revisiting cellulase production and redefining current strategies based on major challenges[J]. Renewable and Sustainable Energy Reviews, 2016, 55:249-272. [9] Karimi K, Taherzadeh MJ.A critical review on analysis in pretreatment of lignocelluloses:Degree of polymerization, adsorption/desorption, and accessibility[J]. Bioresource Technology, 2016, 203:348-356. [10] Kristensen JB, Borjesson J, Bruun MH, et al.Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose[J]. Enzyme and Microbial Technology, 2007, 40(4):888-895. [11] Eriksson T, Borjesson J, Tjerneld F.Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose[J]. Enzyme and Microbial Technology, 2002, 31(3):353-364. [12] Cai C, Qiu X, Lin X, et al.Improving enzymatic hydrolysis of lignocellulosic substrates with pre-hydrolysates by adding cetyltrimethylammonium bromide to neutralize lignosulfonate[J]. Bioresource Technology, 2016, 216:968-975. [13] Lin XL, Zhou MS, Wang SY, et al.Synthesis, structure, and dispersion property of a novel lignin-based polyoxyethylene ether from kraft lignin and poly(ethylene glycol)[J]. Acs Sustainable Chemistry and Engineering, 2014, 2(7):1902-1909. [14] Zajjc JE, Panchal CJ.Bio-emulsifiers[J]. Crc Critical Reviews in Microbiology, 1976, 5(1):39-66. [15] Talukder MMR, Hai YG, Puah SM.Interaction of silica with cellulase and minimization of its inhibitory effect on cellulose hydrolysis[J]. Biochemical Engineering Journal, 2017, 18:91-96. [16] Kamsani N, Salleh MM, Basriet SA, et al.Effects of surfactant on the enzymatic degradation of oil palm empty fruit bunch(OPEFB)[J]. Waste and Biomass Valorization, 2017(3):1-8. [17] Parnthong J, Kungsanant S, Chavadej S.Enhancement of enzymatic hydrolysis of lignocellulosic materials by nonionic surfactant[J]. Key Engineering Materials, 2017, 757:151-155. [18] Kim HJ, Kim SB, Kim CJ.The effects of nonionic surfactants on the pretreatment and enzymatic hydrolysis of recycled newspaper[J]. Biotechnology and Bioprocess Engineering, 2007, 12(2):147-151. [19] Li C, Zhong L, Lan FH, et al.Effect of cellobiase and surfactant supplementation on the enzymatic hydrolysis of pretreated wheat straw[J]. Bioresources, 2011, 6(4):3850-3858. [20] Parnthong J, Kungsanant S, Chavadej S.The Influence of nonionic surfactant adsorption on enzymatic hydrolysis of oil palm fruit bunch[J]. Applied Biochemistry and Biotechnology, 2018(1):1-14. [21] Cai C, Qiu XQ, Zeng MJ, et al.Using polyvinylpyrrolidone to enhance the enzymatic hydrolysis of lignocelluloses by reducing the cellulase non-productive adsorption on lignin[J]. Bioresource Technology, 2016, 227:74-81. [22] Sipos B, Szilagyi M, Sebestyen Z, et al.Mechanism of the positive effect of poly(ethylene glycol)addition in enzymatic hydrolysis of steam pretreated lignocelluloses[J]. Comptes Rendus Biologies, 2011, 334(11):812-823. [23] Li XL, Li M, Pu YQ, et al.Inhibitory effects of lignin on enzymatic hydrolysis:The role of lignin chemistry and molecular weight[J]. Renewable Energy, 2018, 123:664-674. [24] Mizutani C, Sethumadhavan K, Howley P, et al.Effect of a nonionic surfactant on trichoderma cellulase treatments of regenerated cellulose and cotton yarns[J]. Cellulose, 2002, 9(1):83-89. [25] Gupta R, Lee YY.Mechanism of cellulase reaction on pure cellulosic substrates[J]. Biotechnology and Bioengineering, 2010, 102(6):1570-1581. [26] Lou HM, Zhu JY, Lan TQ, et al.pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses[J]. Chemsuschem, 2013, 6(5):919-927. [27] Wang ZJ, Lan TQ, Zhu JY.Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses[J]. Biotechnology for Biofuels, 2013, 6(1):9. [28] Yang MH, Zhang AM, Liu BB, et al.Improvement of cellulose conversion caused by the protection of Tween-80 on the adsorbed cellulase[J]. Biochemical Engineering Journal, 2011, 56(3):125-129. [29] Okino S, Ikeo M, Makoto U, et al.Effects of Tween 80 on cellulase stability under agitated conditions[J]. Bioresource Technology, 2013, 142(8):35-539. [30] Jorgenson H, Vibr-Pedersen J, Larsen J, et al.Liquefaction of lignocellulose at high-solids concentrations[J]. Biotechnology and Bioengineering, 2010, 96(5):862-870. [31] Ma XX, Yue GJ, Yu JL, et al.Enzymatic hydrolysis of cassava bagasse with high solid loading[J]. Journal of Biobased Materials and Bioenergy, 2011, 5(2):275-281. [32] Reese ET.Inactivation of cellulase by shaking and its prevention by surfactants[J]. J Appl Biochem, 1980, 2(1):36-39. [33] Ouyang J, Dong ZW, Song XY, et al.Improved enzymatic hydrolysis of microcrystalline cellulose(Avicel PH101)by polyethylene glycol addition[J]. Bioresource Technology, 2010, 101(17):6685-6691. [34] Borjesson J, Engqvist M, Sipos B, et al.Effect of poly(ethylene glycol)on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose[J]. Enzyme and Microbial Technology, 2007, 41(1):186-195. [35] Cai C, Pang YX, Zhan XJ, et al.Using temperature-responsive zwitterionic surfactant to enhance the enzymatic hydrolysis of lignocelluloses and recover cellulase by cooling[J]. Bioresource Technology, 2017, 243:1141-1148. [36] Alhammad A, Adewale P, Kuttiraja M, et al.Enhancing enzyme-aided production of fermentable sugars from poplar pulp in the presence of non-ionic surfactants[J]. Bioprocess and Biosystems Engineering, 2018. 41(8):1-10. [37] Zhou Y, Chen HM, Feng Q, et al.Non-ionic surfactants do not consistently improve the enzymatic hydrolysis of pure cellulose[J]. Bioresource Technology, 2015, 182:136-143. [38] Liu J, Shi JG, Jian L, et al.Characterization of the interaction between surfactants and enzymes by fluorescence probe[J]. Enzyme and Microbial Technology, 2011, 49(4):360-365. [39] Chandel AK, Silva SSD.Sustainable degradation of lignocellulosic biomass - techniques, applications and commercialization[J]. Bioresource Engineering, 2013, 275:61-64. [40] Jiang F, Qian C, Esker AR, et al.Effect of non-ionic surfactants on dispersion and polar interactions in the adsorption of cellulases onto lignin[J]. Journal of Physical Chemistry B, 2017, 121(41):9607-9620. [41] Cai C, Zhan XJ, Zeng MJ, et al.Using recyclable pH-responsive lignin amphoteric surfactant to enhance the enzymatic hydrolysis of lignocelluloses[J]. Green Chemistry, 2017. 19(22):5479-5487. [42] Lin XL, Qiu XQ, Yuan L, et al.Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates[J]. Bioresource Technology, 2015, 185:165-170. [43] Lin XL, Qiu XQ, Lou HM, et al.Enhancement of lignosulfonate-based polyoxyethylene ether on enzymatic hydrolysis of lignocelluloses[J]. Industrial Crops & Products, 2016. 80:86-92. [44] Li JH, Li SZ, Fan CY, et al.The mechanism of poly(ethylene glycol)4000 effect on enzymatic hydrolysis of lignocellulose[J]. Colloids and Surfaces Biointerfaces, 2012, 89(1):203-210. [45] Lin XL, Cai C, Huang JH, et al.Understanding the effect of the complex of lignosulfonate and cetyltrimethylammonium bromide on the enzymatic digestibility of cellulose[J]. Energy and Fuels, 2017, 31(1):672-678. [46] Xin DL, Yang M, Chen X, et al.Improving the hydrolytic action of cellulases by Tween 80:Offsetting the lost activity of cellobiohydrolase Cel7A[J]. Acs Sustainable Chemistry and Engineering, 2017, 5(12):11339-11345. [47] Lou HM, Zeng MJ, Hu QY, et al.Nonionic surfactants enhanced enzymatic hydrolysis of cellulose by reducing cellulase deactivation caused by shear force and air-liquid interface[J]. Bioresource Technology, 2017, 249:1-8. [48] Bhagia S, Dhir R, Kumar R, et al.Deactivation of cellulase at the air-liquid interface is the main cause of incomplete cellulose conversion at low enzyme loadings[J]. Scientific Reports, 2018. 8(1):1350. [49] Zhang M, Ouyang J, Liu BT, et al.Comparison of hydrolysis efficiency and enzyme adsorption of three;Different cellulosic materials in the presence of poly(ethylene Glycol)[J]. Bioenergy Research, 2013, 6(4):1252-1259. [50] Zheng J, Li LY, Chen SF, et al.Molecular simulation study of water interactions with oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers[J]. Langmuir the Acs Journal of Surfaces and Colloids, 2004, 20(20):8931-8938. [51] Kaar WE, Holtzapple MT.Benefits from Tween during enzymic hydrolysis of corn stover[J]. Biotechnology and Bioengineering, 2015, 59(4):419-427. [52] Seo DJ, Fujita H, Sakoda A.Structural changes of lignocelluloses by a nonionic surfactant, Tween 20, and their effects on cellulase adsorption and saccharification[J]. Bioresource Technology, 2011. 102(20):9605-9612. [53] Kim W, Gamo Y, Sani YM, et al.Effect of Tween 80 on hydrolytic activity and substrate accessibility of carbohydrolase I(CBH I)from Trichoderma viride[J]. Asian Australasian Journal of Animal Sciences, 2006, 19(5):684-689. [54] Helle SS, Duff S JB, Cooper DG.Effect of surfactants on cellulose hydrolysis[J]. Biotechnology and Bioengineering, 2010, 42(5):611-617. [55] Lin XL, Qiu XQ, Zhu DM, et al.Effect of the molecular structure of lignin-based polyoxyethylene ether on enzymatic hydrolysis efficiency and kinetics of lignocelluloses[J]. Bioresource Technology, 2015, 193:266-273. [56] Hemmatinejad N, Vahabzadeh F, Kordestani SS.Effect of surfactants on enzymatic hydrolysis of cellulosic fabric[J]. Iranian Polymer Journal, 2002, 11(5):333-338. |
[1] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[2] | ZHANG Jing, ZHANG Hao-rui, CAO Yun, HUANG Hong-ying, QU Ping, ZHANG Zhi-ping. Research Progress in Thermophilic Microorganisms for Cellulose Degradation [J]. Biotechnology Bulletin, 2023, 39(6): 73-87. |
[3] | MA Yu-qian, SUN Dong-hui, YUE Hao-feng, XIN Jia-yu, LIU Ning, CAO Zhi-yan. Identification, Heterologous Expression and Functional Analysis of a GH61 Family Glycoside Hydrolase from Setosphaeria turcica with the Assisting Function in Degrading Cellulose [J]. Biotechnology Bulletin, 2023, 39(4): 124-135. |
[4] | YAN Tao, CHEN Ke-ke, YANG Heng-fei, ZHU Jian-guo, XIA Jiu-xue, FANG Shu-guang. Study on Factors Affecting the Storage Survival Rates of Probiotic Bacteria Powder [J]. Biotechnology Bulletin, 2023, 39(4): 296-303. |
[5] | SONG Hai-na, WU Xin-tong, YANG Lu-yu, GENG Xi-ning, ZHANG Hua-min, SONG Xiao-long. Selection and Validation of Reference Genes for RT-qPCR in Allium tuberosum Infected by Botrytis squamosa [J]. Biotechnology Bulletin, 2023, 39(3): 101-115. |
[6] | ZHU Ying-xuan, LI Ke-jing, HE Min, ZHENG Dao-qiong. Research Progress in the Exploring Genomic Variations Driven by Stress Factors Using the Yeast Model [J]. Biotechnology Bulletin, 2023, 39(11): 191-204. |
[7] | WANG Wen-tao, FENG Qi, LIU Chen-guang, BAI Feng-wu, ZHAO Xin-qing. Redox-sensitive Genetic Parts Improve the Tolerance of Yeast to Lignocellulosic Hydrolysate Inhibitors [J]. Biotechnology Bulletin, 2023, 39(11): 360-372. |
[8] | YANG Jun-zhao, ZHANG Xin-rui, SUN Qing-yang, ZHENG Fei. Affecting Mechanism of Loop B3 on the Function of GH7 Endoglucanase [J]. Biotechnology Bulletin, 2023, 39(10): 281-291. |
[9] | LI Sheng-yan, LI Xiang-yin, LI Peng-cheng, ZHANG Ming-jun, ZHANG Jie, LANG Zhi-hong. Identification of Target Traits and Genetic Stability of Transgenic Maize 2HVB5 [J]. Biotechnology Bulletin, 2023, 39(1): 21-30. |
[10] | ZHANG Kai-ping, LIU Yan-li, TU Mian-liang, LI Ji-wei, WU Wen-biao. Optimization of Producing Cellulase by Aspergillus fumigatus A-16 and Its Enzymatic Properties [J]. Biotechnology Bulletin, 2022, 38(9): 215-225. |
[11] | YUAN Cun-xia, LI Yan-nan, ZHANG Xiao-chong, YANG Rui, LIU Jian-li, LI Jing-yu. Physiological and Biochemical Response Characteristics of Bacillus sp. ZJS3 Under As3+ Stress [J]. Biotechnology Bulletin, 2022, 38(7): 236-246. |
[12] | WANG Xin-guang, TIAN Lei, WANG En-ze, ZHONG Cheng, TIAN Chun-jie. Construction of Microbial Consortium for Efficient Degradation of Corn Straw and Evaluation of Its Degradation Effect [J]. Biotechnology Bulletin, 2022, 38(4): 217-229. |
[13] | WANG Zi-yan, WANG Jian, ZHANG Lun, GUI Shui-qing, LU Xue-mei. Study on Antibacterial Stability of Musca domestica Cecropin-MDC Against Salmonella typhimurium [J]. Biotechnology Bulletin, 2022, 38(3): 149-156. |
[14] | LIANG Xing-xing, WANG Jia, XU Wen-tao. Research Progress in Phosphorylation Modification of Antiviral Nucleotide Analogs [J]. Biotechnology Bulletin, 2022, 38(2): 218-226. |
[15] | ZHANG Gong-you, WANG Yi-han, GUO Min, ZHANG Ting-ting, WANG Bing, LIU Hong-mei. Isolation and Identification of a Cellulase-producing Endophytic Fungus in Paris polyphylla var. yunnanensis [J]. Biotechnology Bulletin, 2022, 38(2): 95-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||