Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (11): 1-8.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0192
ZHANG Xin1(), ZHOU Xiao-jin2, PANG Sen1, LI Su-zhen2, HUANG Jia-xing1, CHEN Ru-mei2()
Received:
2020-02-27
Online:
2020-11-26
Published:
2020-11-20
Contact:
CHEN Ru-mei
E-mail:zhangxin7780@cau.edu.cn;chenrumei@caas.cn
ZHANG Xin, ZHOU Xiao-jin, PANG Sen, LI Su-zhen, HUANG Jia-xing, CHEN Ru-mei. Cloning of ZmENA1 and Its Responses to Metal Ions in Maize[J]. Biotechnology Bulletin, 2020, 36(11): 1-8.
[1] | Organization WH. Trace elements in human nutrition and health[M]. Geneva:World Health Organization, 1996. |
[2] |
Vallee BL, Falchuk KH. The biochemical basis of zinc physiology[J]. Physiological Reviews, 1993,73(1):79-118.
URL pmid: 8419966 |
[3] |
Vallee BL, Auld DS. Zinc coordination, function, and structure of zinc enzymes and other proteins[J]. Biochemistry, 1990,29(24):5647-5659.
URL pmid: 2200508 |
[4] | Cakmak I. Enrichment of cereal grains with zinc:Agronomic or genetic biofortification?[J]. Plant and Soil, 2008,302(1-2):1-17. |
[5] |
Huffman DL, O’halloran TV. Function, structure, and mechanism of intracellular copper trafficking proteins[J]. Annual Review of Biochemistry, 2001,70(1):677-701.
doi: 10.1146/annurev.biochem.70.1.677 URL |
[6] | Kende H. Biochemistry and molecular biology of plants[J]. Science, 2000,290(5492):719-719. |
[7] | Millaleo R, Reyes-Diaz M, Ivanov AG, et al. Manganese as essential and toxic element for plants:transport, accumulation and resistance mechanisms[J]. Journal of Soil Science and Plant Nutrition, 2010,10(4):476-494. |
[8] |
Wu X, Cobbina SJ, Mao G, et al. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment[J]. Environ Sci Pollut Res Int, 2016,23(9):8244-8259.
doi: 10.1007/s11356-016-6333-x URL pmid: 26965280 |
[9] | Goyer RA, Cherian ME. Toxicology of metals[M]. Berlin:Springer, 1995. |
[10] |
Aziz R, Rafiq MT, Li T, et al. Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines(Caco-2/HL-7702)[J]. J Agric Food Chem, 2015,63(13):3599-3608.
doi: 10.1021/jf505557g URL pmid: 25738308 |
[11] |
Nomam M, Noguchie M, Tamaki E. A new amino acid, nicotianamine, from tobacco leaves[J]. Tetrahedron Letters, 1971: 2017-2020.
URL pmid: 20305723 |
[12] | Suzuki K, Higuchi K, Nakanishi H, et al. Cloning of nicotianamine synthase genes from Arabidopsis thaliana[J]. Soil Science and Plant Nutrition, 1999,45(4):993-1002. |
[13] |
Wiren VN. Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants[J]. Plant Physiology, 1999,119(3):1107-1114.
doi: 10.1104/pp.119.3.1107 URL pmid: 10069850 |
[14] |
Nishiyama R, Kato M, Nagata S, et al. Identification of Zn-nicotianamine and Fe-2'-deoxymugineic acid in the phloem sap from rice plants(Oryza sativa L.)[J]. Plant and Cell Physiology, 2012,53(2):381-390.
URL pmid: 22218421 |
[15] |
Schuler M, Rellan-Alvarez R, Fink-Straube C, et al. Nicotianamine functions in the phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis[J]. Plant Cell, 2012,24(6):2380-2400.
URL pmid: 22706286 |
[16] |
Takahashi M, Terada Y, Nakai I, et al. Role of nicotianamine in the intracellular delivery of metals and plant reproductive development[J]. Plant Cell, 2003,15(6):1263-1280.
URL pmid: 12782722 |
[17] | Ma JF, Taketa S, Chang YC, et al. Biosynjournal of phytosiderophores in several Triticeae species with different genomes[J]. Journal of Experimental Botany, 1999,50(334):723-726. |
[18] |
Bashir K, Nozoye T, Nagasaka S, et al. Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice[J]. Journal of Experimental Botany, 2017,68(7):1785-1795.
doi: 10.1093/jxb/erx065 URL pmid: 28369596 |
[19] |
Banakar R, Alvarez Fernandez A, Diaz-Benito P, et al. Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium[J]. Journal of Experimental Botany, 2017,68(17):4983-4995.
doi: 10.1093/jxb/erx304 URL pmid: 29048564 |
[20] |
Nozoye T, Nagasaka S, Kobayashi T, et al. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants[J]. Journal of Biological Chemistry, 2011,286(7):5446-5454.
doi: 10.1074/jbc.M110.180026 URL |
[21] |
Nozoye T, Von Wiren N, Sato Y, et al. Characterization of the nicotianamine exporter ENA1 in rice[J]. Frontiers in Plant Science, 2019,10:502.
doi: 10.3389/fpls.2019.00502 URL pmid: 31114596 |
[22] |
Haydon MJ, Kawachi M, Wirtz M, et al. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis[J]. Plant Cell, 2012,24(2):724-737.
URL pmid: 22374397 |
[23] |
Haydon MJ, Cobbett CS. A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis[J]. Plant Physiology, 2007,143(4):1705-1719.
URL pmid: 17277087 |
[24] |
Pianelli K, Mari S, Marques L, et al. Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana[J]. Transgenic Res, 2005,14(5):739-748.
doi: 10.1007/s11248-005-7159-3 URL |
[25] |
Sugai A, Sato H, Yoneda M, et al. Phosphorylation of measles virus nucleoprotein affects viral growth by changing gene expression and genomic RNA stability[J]. Journal of Virology, 2013,87(21):11684-11692.
doi: 10.1128/JVI.01201-13 URL pmid: 23966404 |
[26] |
Du X, Wang H, He J, et al. Identification of nicotianamine synthase genes in Triticum monococcum and their expression under different Fe and Zn concentrations[J]. Gene, 2018,672:1-7.
doi: 10.1016/j.gene.2018.06.015 URL pmid: 29885462 |
[27] |
Irtelli B, Petrucci WA, Navari-Izzo F. Nicotianamine and histidine/proline are, respectively, the most important copper chelators in xylem sap of Brassica carinata under conditions of copper deficiency and excess[J]. Journal of Experimental Botany, 2009,60(1):269-277.
doi: 10.1093/jxb/ern286 URL pmid: 19033552 |
[28] |
Kobayashi T, Nozoye T, Nishizawa NK. Iron transport and its regulation in plants[J]. Free Radical Biology and Medicine, 2019,133:11-20.
URL pmid: 30385345 |
[29] |
Kim S, Takahashi M, Higuchi K, et al. Increased nicotianamine biosynjournal confers enhanced tolerance of high levels of metals, in particular nickel, to plants[J]. Plant and Cell Physiology, 2005,46(11):1809-1818.
doi: 10.1093/pcp/pci196 URL pmid: 16143596 |
[30] |
Ishimaru Y, Masuda H, Bashir K, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese[J]. Plant Journal, 2010,62(3):379-390.
URL pmid: 20128878 |
[31] |
Sasaki A, Yamaji N, Xia J, et al. OsYSL6 is involved in the detoxification of excess manganese in rice[J]. Plant Physiol, 2011,157(4):1832-1840.
doi: 10.1104/pp.111.186031 URL pmid: 21969384 |
[1] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[2] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[3] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[4] | LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry [J]. Biotechnology Bulletin, 2023, 39(8): 4-10. |
[5] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[6] | LIU Yue-e, XU Tian-jun, CAI Wan-tao, LYU Tian-fang, ZHANG Yong, XUE Hong-he, WANG Rong-huan, ZHAO Jiu-ran. Current Status and Prospects of Maize Super High Yield Research in China [J]. Biotechnology Bulletin, 2023, 39(8): 52-61. |
[7] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[8] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[9] | LI Jing-rui, WANG Yu-bo, XIE Zi-wei, LI Chang, WU Xiao-lei, GONG Bin-bin, GAO Hong-bo. Identification and Expression Analysis of PIN Gene Family in Melon Under High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(5): 192-204. |
[10] | GUO San-bao, SONG Mei-ling, LI Ling-xin, YAO Zi-zhao, GUI Ming-ming, HUANG Sheng-he. Cloning and Analysis of Chalcone Synthase Gene and Its Promoter from Euphorbia maculata [J]. Biotechnology Bulletin, 2023, 39(4): 148-156. |
[11] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[12] | CHEN Nan-nan, WANG Chun-lai, JIANG Zhen-zhong, JIAO Peng, GUAN Shu-yan, MA Yi-yong. Genetic Transformation and Chilling Resistance Analysis of Maize ZmDHN15 Gene in Tobacco [J]. Biotechnology Bulletin, 2023, 39(4): 259-267. |
[13] | YANG Lan, ZHANG Chen-xi, FAN Xue-wei, WANG Yang-guang, WANG Chun-xiu, LI Wen-ting. Gene Cloning, Expression Pattern, and Promoter Activity Analysis of Chicken BMP15 [J]. Biotechnology Bulletin, 2023, 39(4): 304-312. |
[14] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[15] | PING Huai-lei, GUO Xue, YU Xiao, SONG Jing, DU Chun, WANG Juan, ZHANG Huai-bi. Cloning and Expression of PdANS in Paeonia delavayi and Correlation with Anthocyanin Content [J]. Biotechnology Bulletin, 2023, 39(3): 206-217. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||