Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (11): 21-29.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0510
Previous Articles Next Articles
HAO Xiao-hua1,2(), DAI Jia-li2, JI Wen-jin2, HUANG Dan2, LI Dong-ping2, TIAN Lian-fu2()
Received:
2020-04-30
Online:
2020-11-26
Published:
2020-11-20
Contact:
TIAN Lian-fu
E-mail:14771417@qq.com;hnsdtlf@163.com
HAO Xiao-hua, DAI Jia-li, JI Wen-jin, HUANG Dan, LI Dong-ping, TIAN Lian-fu. Screening and Identification of LCD-interacting Proteins in Rice[J]. Biotechnology Bulletin, 2020, 36(11): 21-29.
引物名称 | 引物序列(5'-3') | 酶切位点 |
---|---|---|
pBT3-N-F | GGCCATTACGGCCATGGTGGAAACCACAGTT | Sfi I |
pBT3-N-R | GGCCGAGGCGGCCTTTTTTACAAGGCCACTT | Sfi I |
pGBKT7-F | GGAATTCATGGTGGAAACCACAGTTGATGTT | EcoR I |
pGBKT7-R | CGGGATCCGTTTTTTACAAGGCCACTTCCAG | BamH I |
引物名称 | 引物序列(5'-3') | 酶切位点 |
---|---|---|
pBT3-N-F | GGCCATTACGGCCATGGTGGAAACCACAGTT | Sfi I |
pBT3-N-R | GGCCGAGGCGGCCTTTTTTACAAGGCCACTT | Sfi I |
pGBKT7-F | GGAATTCATGGTGGAAACCACAGTTGATGTT | EcoR I |
pGBKT7-R | CGGGATCCGTTTTTTACAAGGCCACTTCCAG | BamH I |
引物名称 | 引物序列(5'-3') |
---|---|
pPR3-N-F | GTCGAAAATTCAAGACAAG |
pPR3-N-R | AAGCGTGACATAACTAATTA |
pGADT7-F | GGAGTACCCATACGACGTACC |
pGADT7-R | TATCTACGATTCATCTGCAGC |
引物名称 | 引物序列(5'-3') |
---|---|
pPR3-N-F | GTCGAAAATTCAAGACAAG |
pPR3-N-R | AAGCGTGACATAACTAATTA |
pGADT7-F | GGAGTACCCATACGACGTACC |
pGADT7-R | TATCTACGATTCATCTGCAGC |
组合 | 质粒1 | 质粒2 | 目的 | 缺陷培养基 | 生长状态 |
---|---|---|---|---|---|
1 | pBT3-N-LCD | - | 自激活检测 | SD-Leu SD-Lue-Trp | √ × |
2 | pBT3-N-LCD | pOst-Nub1 | 阳性对照 | SD-Lue-Trp SD-Lue-Trp-His SD-Lue-Trp-His-Ade | √ √ √ |
3 | pBT3-N-LCD | pPR3-N | 阴性对照 | SD-Lue-Trp SD-Lue-Trp-His SD-Lue-Trp-His-Ade | √ ×/少量 × |
组合 | 质粒1 | 质粒2 | 目的 | 缺陷培养基 | 生长状态 |
---|---|---|---|---|---|
1 | pBT3-N-LCD | - | 自激活检测 | SD-Leu SD-Lue-Trp | √ × |
2 | pBT3-N-LCD | pOst-Nub1 | 阳性对照 | SD-Lue-Trp SD-Lue-Trp-His SD-Lue-Trp-His-Ade | √ √ √ |
3 | pBT3-N-LCD | pPR3-N | 阴性对照 | SD-Lue-Trp SD-Lue-Trp-His SD-Lue-Trp-His-Ade | √ ×/少量 × |
序号 | 基因ID | 功能预测 |
---|---|---|
1 | LOC_Os01g67250 | Rad21 / Rec8 like protein |
2 | LOC_Os10g34614 | csAtPR5 |
3 | LOC_Os07g39900 | interferon-related developmental regulator(IFRD) |
4 | LOC_Os08g01780 | OsIAA25-Auxin-responsive,Aux/IAA gene family member |
5 | LOC_Os02g35560 | OsFBX53 - F-box domain containing protein |
6 | LOC_Os06g45120 | ATP synthase |
7 | LOC_Os03g38020 | MOB激酶家族,mps one binder kinase activator-like 1A |
8 | LOC_Os03g17140 | expressed protein |
9 | LOC_Os08g42050 | emp24/gp25L/p24 family protein,transporter activity |
10 | LOC_Os12g32380 | 40S ribosomal protein S29 |
11 | LOC_Os05g03780 | 金属耐受蛋白基因(OsMTP1) |
12 | LOC_Os07g44180 | 低温诱导的小分子量完整膜蛋白基因(OsLti6a) |
13 | LOC_Os09g30418 | heat shock protein,HSP |
14 | LOC_Os01g69220 | exostosin family domain containing protein |
15 | LOC_Os01g38970 | carbamoyl-pHospHate synthase large chain |
16 | LOC_Os03g57790 | 泛素结合酶,UBC |
17 | LOC_Os08g41990 | Aminotransferase |
18 | LOC_Os10g08550 | 2-磷酸甘油酸水解酶,enolase |
19 | LOC_Os06g08170 | MFS transporter |
20 | LOC_Os11g25980 | phospholipid-transporting ATPase2 |
21 | LOC_Os08g44280 | L-异天冬氨酸甲基转移酶(OsPIMT1) |
22 | LOC_Os02g33500 | threonyl-tRNA synthetase,putative |
序号 | 基因ID | 功能预测 |
---|---|---|
1 | LOC_Os01g67250 | Rad21 / Rec8 like protein |
2 | LOC_Os10g34614 | csAtPR5 |
3 | LOC_Os07g39900 | interferon-related developmental regulator(IFRD) |
4 | LOC_Os08g01780 | OsIAA25-Auxin-responsive,Aux/IAA gene family member |
5 | LOC_Os02g35560 | OsFBX53 - F-box domain containing protein |
6 | LOC_Os06g45120 | ATP synthase |
7 | LOC_Os03g38020 | MOB激酶家族,mps one binder kinase activator-like 1A |
8 | LOC_Os03g17140 | expressed protein |
9 | LOC_Os08g42050 | emp24/gp25L/p24 family protein,transporter activity |
10 | LOC_Os12g32380 | 40S ribosomal protein S29 |
11 | LOC_Os05g03780 | 金属耐受蛋白基因(OsMTP1) |
12 | LOC_Os07g44180 | 低温诱导的小分子量完整膜蛋白基因(OsLti6a) |
13 | LOC_Os09g30418 | heat shock protein,HSP |
14 | LOC_Os01g69220 | exostosin family domain containing protein |
15 | LOC_Os01g38970 | carbamoyl-pHospHate synthase large chain |
16 | LOC_Os03g57790 | 泛素结合酶,UBC |
17 | LOC_Os08g41990 | Aminotransferase |
18 | LOC_Os10g08550 | 2-磷酸甘油酸水解酶,enolase |
19 | LOC_Os06g08170 | MFS transporter |
20 | LOC_Os11g25980 | phospholipid-transporting ATPase2 |
21 | LOC_Os08g44280 | L-异天冬氨酸甲基转移酶(OsPIMT1) |
22 | LOC_Os02g33500 | threonyl-tRNA synthetase,putative |
组合 | 质粒1 | 质粒2 | 目的 | 缺陷培养基 | 生长状态 |
---|---|---|---|---|---|
1 | pOst-Nub1 | pBT3-N | 阳性对照 | SD-Lue-Trp SD-Lue-Trp-His-Ade | √ √ |
2 | pPR3-N-1 | pBT3-N | 自激活检测 | SD-Lue-Trp SD-Lue-Trp-His-Ade | √ × |
3 | pPR3-N-2 | pBT3-N | 自激活检测 | SD-Lue-Trp SD-Lue-Trp-His-Ade | √ × |
… | … | … | … | … | … |
16 | pPR3-N-15 | pBT3-N | 自激活检测 | SD-Lue-Trp SD-Lue-Trp-His-Ade | √ √ |
… | … | … | … | … | … |
23 | pPR3-N-22 | pBT3-N | 自激活检测 | SD-Lue-Trp SD-Lue-Trp-His-Ade | √ × |
组合 | 质粒1 | 质粒2 | 目的 | 缺陷培养基 | 生长状态 |
---|---|---|---|---|---|
1 | pOst-Nub1 | pBT3-N | 阳性对照 | SD-Lue-Trp SD-Lue-Trp-His-Ade | √ √ |
2 | pPR3-N-1 | pBT3-N | 自激活检测 | SD-Lue-Trp SD-Lue-Trp-His-Ade | √ × |
3 | pPR3-N-2 | pBT3-N | 自激活检测 | SD-Lue-Trp SD-Lue-Trp-His-Ade | √ × |
… | … | … | … | … | … |
16 | pPR3-N-15 | pBT3-N | 自激活检测 | SD-Lue-Trp SD-Lue-Trp-His-Ade | √ √ |
… | … | … | … | … | … |
23 | pPR3-N-22 | pBT3-N | 自激活检测 | SD-Lue-Trp SD-Lue-Trp-His-Ade | √ × |
编号 | 基因ID | 功能预测 |
---|---|---|
1 | LOC_Os10g28254 | Expressed protein |
2 | LOC_Os03g15570 | Protein kinase-like |
3 | LOC_Os12g08760 | Carboxyvinyl-carboxyphosphonate Phosphorylmutase |
4 | LOC_Os 01g64660 | Fructose-1,6-bisphosphatase |
5 | LOC_Os 12g18110 | Lysosomal Cystine Transporter family protein |
6 | LOC_Os 05g45950 | VDAC(outer mitochondrial membrane porin) |
7 | LOC_Os 02g33820 | Abscisic stress-ripening |
编号 | 基因ID | 功能预测 |
---|---|---|
1 | LOC_Os10g28254 | Expressed protein |
2 | LOC_Os03g15570 | Protein kinase-like |
3 | LOC_Os12g08760 | Carboxyvinyl-carboxyphosphonate Phosphorylmutase |
4 | LOC_Os 01g64660 | Fructose-1,6-bisphosphatase |
5 | LOC_Os 12g18110 | Lysosomal Cystine Transporter family protein |
6 | LOC_Os 05g45950 | VDAC(outer mitochondrial membrane porin) |
7 | LOC_Os 02g33820 | Abscisic stress-ripening |
[1] |
Liu J, Liang J, Li K, et al. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress[J]. Chemosphere, 2003,52:1467-1473.
doi: 10.1016/S0045-6535(03)00484-3 URL pmid: 12867177 |
[2] |
Zhang G, Fukami M, Sekimoyo H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage[J]. Field Crop Research, 2002,77:93-98.
doi: 10.1016/S0378-4290(02)00061-8 URL |
[3] |
Gussarson M, Asp H, Adalateeinsson S. Enhancement of cadmium effects on growth and nutrient composition of birch(Betula pendula)by buthionine sulphoximine(BSO)[J]. Journal of Experimental Botany, 1996,47:211-215.
doi: 10.1093/jxb/47.2.211 URL |
[4] |
Uraguchi S, Mori S, Kuramata M, et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J]. Journal of Experimental Botany, 2009,60:2677-2688.
doi: 10.1093/jxb/erp119 URL pmid: 19401409 |
[5] | 李隼, 黄胜东, 赵福庚. 重金属镉对水稻根毛细胞钾离子吸收过程的影响[J]. 植物生理学报, 2011,47(5):481-487. |
Li S, Huang SD, Zhao FG. Effects of cadmium on K+ uptake in root hair cells of rice[J]. Plant Physiol J, 2011,47(5):481-487. | |
[6] | 孟桂元, 蒋端生, 柏连阳, 等. Cd 胁迫下苎麻的生长响应与富集、转运特征研究[J]. 生态科学, 2012,31(2):192-196. |
Meng GY, Jiang DS, Bai LY, et al. Growth response, accumulation and transfer characteristics of ramie(Boehmeria nivea)under cadmium stress[J]. Ecological Science, 2012,31(2):192-196. | |
[7] | Adamis P Gomes D, Pinto M. The role of glutathione transferases in cadmium stress[J]. Toxicology Letters, 2004,154(1/2):81-88. |
[8] |
Lin Y, Chao Y, Kao C. Exposure of rice seedlings to heat shock protects against subsequent Cd-induced decrease in glutamine synthetase activity and increase in specific protease activity in leave[J]. J Plant Physiol, 2010,167(13):1061-1065.
doi: 10.1016/j.jplph.2010.03.002 URL pmid: 20399533 |
[9] | Shah K, Kumar RG, Verma S. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings[J]. Plant Science, 2001,161(6):1135-1144. |
[10] | Takahashi R, Ishimaru Y, Nakanishi H, et al. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice[J]. Plant Signal Behavior, 2011,6(11):1813-1816. |
[11] | Cao Z, Qin M, Lin X, et al. Sulfur supply reduces cadmium uptake and translocation in rice grains(Oryza sativa L.)by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration[J]. Environ Pollution, 2018,238:76-84. |
[12] | Yang M, Zhang W, Dong H, et al. OsNRAMP3 is a vascular bundles-specific manganese transporter that is responsible for manganese distribution in rice[J]. PLoS One, 2013,12:e83990. |
[13] |
Ishimaru Y, Takahashi R, Bashir K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012,2:286.
doi: 10.1038/srep00286 URL pmid: 22368778 |
[14] | Cailliatte R, Lapeyre B, Briat J, et al. The NRAMP6 metal transporter contributes to cadmium toxicity[J]. Biochem Journal, 2009,2:217-228. |
[15] |
Yamaji N, Xia J, Mitani-Ueno N, et al. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2[J]. Plant Physiol, 2013,162(2):927-939.
doi: 10.1104/pp.113.216564 URL pmid: 23575418 |
[16] |
Ueno D, Yamaji N, Kono I, et al. Gene limiting cadmium accumulation in rice[J]. Proc Natl Acad Sci USA, 2010,107(38):16500-16505.
doi: 10.1073/pnas.1005396107 URL pmid: 20823253 |
[17] |
Lee S, Kim Y, Lee Y, et al. Rice P-1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein[J]. Plant Physiology, 2007,145(3):831-842.
doi: 10.1104/pp.107.102236 URL pmid: 17827266 |
[18] | Lee S, An G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice[J]. Plant Cell Environment, 2009,32(4):408-416. |
[19] |
Nakanishi H, Ogawa I, Ishimaru Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science and Plant Nutrition, 2006,52(4):464-469.
doi: 10.1111/j.1747-0765.2006.00055.x URL |
[20] |
Li D, Wang L, Wang Y, et al. Soil properties and cultivars determine heavy metal accumulation in rice grain and cultivars respond differently to Cd stress[J]. Environmental Science and Pollution Research, 2019,26(14):14638-14648.
doi: 10.1007/s11356-019-04727-9 URL pmid: 30877541 |
[21] |
Shimo H, Ishimaru Y, An G, et al. Low cadmium(LCD), a novel gene related to cadmium tolerance and accumulation in rice[J]. Journal of Experimental Botany, 2011,62(15):5727-5734.
doi: 10.1093/jxb/err300 URL pmid: 21908474 |
[22] |
Uraguchi S, Kamiya T, Sakamoto T, et al. Low-affinity cation transporter(OsLCT1)regulates cadmium transport into rice grains[J]. Proc Natl Acad Sci USA, 2011,108(52):20959-20964.
doi: 10.1073/pnas.1116531109 URL pmid: 22160725 |
[23] |
Song J, Luo H, Yin X, et al. Association between cadmium exposure and renal cancer risk:a meta-analysis of observational studies[J]. Scientific Reports, 2015,5:17976.
URL pmid: 26656678 |
[24] |
Hao X, Zeng M, Wang J, et al. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice[J]. Frontiers in Plant Science, 2018,9:476.
doi: 10.3389/fpls.2018.00476 URL pmid: 29696032 |
[25] | Oda K, Otani M, Uraguchi S, et al. Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast[J]. Biosci Biotech Bioch, 2011,75(6):1211-1213. |
[26] |
Luo J, Huang J, Zeng D, et al. A defensin-like protein drives cadmium efflux and allocation in rice[J]. Nature Communications, 2018,9(1):645.
doi: 10.1038/s41467-018-03088-0 URL pmid: 29440679 |
[27] |
Yamazaki S, Ueda Y, Mukai A, et al. Rice phytochelatin synthases OsPCS1 and OsPCS2 make different contributions to cadmium and arsenic tolerance[J]. Plant Direct, 2018,2(1):e00034.
doi: 10.1002/pld3.34 URL pmid: 31245682 |
[28] | Das N, Bhattacharya S, Bhattacharyya S, et al. Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses[J]. Plant Mol Biol, 2017,94(1/2):167-183. |
[29] |
Lan H, Wang Z, Wang Q, et al. Characterization of a vacuolar zinc transporter OZT1 in rice(Oryza sativa L.)[J]. Molecular Biology Reports, 2013,40(2):1201-1210.
doi: 10.1007/s11033-012-2162-2 URL pmid: 23070916 |
[30] | Yuan L, Yang S, Liu B, et al. Molecular characterization of a rice metal tolerance protein, OsMTP1[J]. Plant Cell Report, 2012,1:67-79. |
[31] | 李先昆, 聂志毅, 曾日中. 酵母双杂交技术研究与应用进展[J]. 安徽农业科学, 2009,37(7):2867-2869, 2926. |
Li XK, Nie ZY, Zeng RZ. Research and application advances of yeast two-hybrid technique[J]. Journal of Anhui Agricultural Sciences, 2009,37(7):2867-2869, 2926. | |
[32] | Soellick T, Uhrig J. Development of an optimized interaction-mating protocol for large-scale yeast two-hybrid analyses[J]. Genome Biology, 2001,2(12):52-60. |
[33] |
Neveu G, Cassonnet P, Vidalain P. Comparative analysis of virus-host interactomes with a mammalian high-throughput protein complementation assay based on gaussia princeps luciferase[J]. Methods, 2012,58(4):349-359.
doi: 10.1016/j.ymeth.2012.07.029 URL pmid: 22898364 |
[34] |
Stagljar I, Korostensky C, Heesen JST. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo[J]. Proc Natl Acad Sci USA, 1998,95(9):5187-5192.
doi: 10.1073/pnas.95.9.5187 URL pmid: 9560251 |
[35] |
Liu W, Gray S, Huo Y, et al. Proteomic analysis of interaction between a plant virus and its vector insect reveals new functions of hemipteran cuticular protein[J]. Molecular & Cellular Proteomics, 2015,14(8):2229-2242.
doi: 10.1074/mcp.M114.046763 URL pmid: 26091699 |
[36] |
Carroll A, Mansoori N, Li S, et al. Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis plants[J]. Plant Physiology, 2012,160(2):726-737.
doi: 10.1104/pp.112.199208 URL pmid: 22926318 |
[37] |
Sasaki A, Yamaji N, Yokosho K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012,24:2155-2167.
doi: 10.1105/tpc.112.096925 URL pmid: 22589467 |
[38] |
Cai H, Huang S, Che J, et al. The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice[J]. Journal of Experimental Botany, 2019,70(10):2717-2725.
URL pmid: 30840766 |
[39] |
Ding Y, Ye Y, Jiang Z, et al. MicroRNA390 is involved in cadmium tolerance and accumulation in rice[J]. Frontiers in Plant Science, 2016,7:235.
doi: 10.3389/fpls.2016.00235 URL pmid: 26973678 |
[40] |
Yan H, Xu W, Xie J, et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies[J]. Nat Commun, 2019,10:2562.
doi: 10.1038/s41467-019-10544-y URL pmid: 31189898 |
[41] |
Liu Y, Liu L, Qi J, et al. Cadmium activates ZmMPK3-1 and ZmMPK6-1 via induction of reactive oxygen species in maize roots[J]. Biochemical and Biophysical Research Communications, 2019,516(3):747-752.
doi: 10.1016/j.bbrc.2019.06.116 URL pmid: 31253404 |
[42] |
Yeh C, Chien P, Huang H. Distinct signaling pathways for induction of MAP kinase activities by cadmium and copper in rice roots[J]. J Exp Bot, 2007,58(3):659-671.
doi: 10.1093/jxb/erl240 URL pmid: 17259646 |
[43] |
Cui Y, Wang M, Yin X, et al. OsMSR3, a small heat shock protein, confers enhanced tolerance to copper stress in Arabidopsis thaliana[J]. Int J Mol Sci, 2019,20(23):e6096.
doi: 10.3390/ijms20236096 URL pmid: 31816902 |
[44] | Cui Y, Xu G, Wang M, et al. Expression of OsMSR3 in Arabidopsis enhances tolerance to cadmium stress[J]. Plant Cell Tissue and Organ Culture, 2013,113:331-340. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[3] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[4] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[5] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[6] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[7] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[8] | WANG Tao, QI Si-yu, WEI Chao-ling, WANG Yi-qing, DAI Hao-min, ZHOU Zhe, CAO Shi-xian, ZENG Wen, SUN Wei-jiang. Expression Analysis and Interaction Protein Validation of CsPPR and CsCPN60-like in Albino Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(3): 218-231. |
[9] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[10] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[11] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[12] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. Identification and Gene Functional Analysis of Salinity-hypersensitive Mutant ss2 in Rice [J]. Biotechnology Bulletin, 2022, 38(9): 158-166. |
[13] | GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress [J]. Biotechnology Bulletin, 2022, 38(9): 226-236. |
[14] | HUANG Jing, ZHU Liang, XUE Peng-bo, FU Qiang. Research on Mechanism and QTL Mapping Associated with Cadmium Accumulation in Rice Leaves and Grains [J]. Biotechnology Bulletin, 2022, 38(8): 118-126. |
[15] | CAI Jia, LIANG Zhen-yu, HUANG Yu, LU Yi-shan, SHI gang, JIAN Ji-chang. Screening and Identifing the Interacting Proteins of Grouper(Epinephelus coioides)EcBAG3 Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2022, 38(8): 77-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||