Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (12): 239-246.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0429
Previous Articles Next Articles
HU Qi-chao(), LUORENG Zhuo-ma, WEI Da-wei, YANG Jian, JIA Li, WANG Xing-ping(), MA Yun
Received:
2020-04-15
Online:
2020-12-26
Published:
2020-12-22
Contact:
WANG Xing-ping
E-mail:973700675@qq.com;wxp@nxu.edu.cn
HU Qi-chao, LUORENG Zhuo-ma, WEI Da-wei, YANG Jian, JIA Li, WANG Xing-ping, MA Yun. Research Progress on Innate Immunity-Related Coding Genes in the Regulation of Cow Mastitis[J]. Biotechnology Bulletin, 2020, 36(12): 239-246.
[1] |
Carvalho MR, Peñagaricano F, Santos JEP, et al. Long-term effects of postpartum clinical disease on milk production, reproduction, and culling of dairy cows[J]. Journal of Dairy Science, 2019,102(12):11701-11717.
URL pmid: 31548073 |
[2] |
Berry R, Watson GM, Jonjic S, et al. Modulation of innate and adaptive immunity by cytomegaloviruses[J]. Nature Reviews Immunology, 2020,20(2):113-127.
URL pmid: 31666730 |
[3] |
Takeuchi O, Akira S. Pattern recognition receptors and inflammation[J]. Cell, 2010,140(6):805-820.
doi: 10.1016/j.cell.2010.01.022 URL pmid: 20303872 |
[4] | Carvalho DCM, Cavalcante-Silva LHA, Lima ÉDA, et al. Marinobufagenin inhibits neutrophil migration and proinflammatory cytokines[J]. Journal of Immunology Research, 2019: 1694520. |
[5] |
Souza R, Rault L, Seyffert N, et al. Lactobacillus casei BL23 modulates the innate immune response in Staphylococcus aureus-stimulated bovine mammary epithelial cells[J]. Beneficial Microbes, 2018,9(6):985-995.
URL pmid: 30041534 |
[6] |
Wellnitz O, Bruckmaier RM. The innate immune response of the bovine mammary gland to bacterial infection[J]. The Veterinary Journal, 2012,192(2):148-152.
URL pmid: 22498784 |
[7] |
Rinaldi M, Li RW, Capuco AV. Mastitis associated transcriptomic disruptions in cattle[J]. Veterinary Immunology and Immunopathology, 2010,138(4):267-279.
URL pmid: 21040982 |
[8] |
Thompson-Crispi K, Atalla H, Miglior F, et al. Bovine mastitis:frontiers in immunogenetics[J]. Front Immunol, 2014,5:493.
URL pmid: 25339959 |
[9] | Buitenhuis B, Røntved CM, Edwards SM, et al. In depth analysis of genes and pathways of the mammary gland involved in the pathogenesis of bovine Escherichia coli-mastitis[J]. BMC Genomics, 2011,12(1):130. |
[10] |
Lutzow YC, Donaldson L, Gray CP, et al. Identification of immune genes and proteins involved in the response of bovine mammary tissue to Staphylococcus aureus infection[J]. BMC Veterinary Research, 2008,4:18.
URL pmid: 18513449 |
[11] |
Kościuczuk EM, Lisowski P, Jarczak J, et al. Expression patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative Staphylococci[J]. BMC Vet Res, 2014,10:246.
URL pmid: 25286984 |
[12] | Mitterhuemer S, Petzl W, Krebs S, et al. Escherichia coli infection induces distinct local and systemic transcriptome responses in the mammary gland[J]. BMC Genomics, 2010,11(1):138. |
[13] | 罗仍卓么. 奶牛乳腺炎差异表达基因筛选及miR-146a在乳腺上皮细胞炎症反应中的功能研究[D]. 杨凌:西北农林科技大学, 2018. |
Luoreng ZM. Screening of differentially expressed genes related to mastitis in dairy cows and the function of miR-146a in bMEC inflammatory response[D]. Yangling:Northwest A&F University, 2018. | |
[14] | Wang XG, Ju ZH, Hou MH, et al. Deciphering transcriptome and complex alternative splicing transcripts in mammary gland tissues from cows naturally infected with Staphylococcus aureus mastitis[J]. PLoS One, 2016,11(7):e159719. |
[15] |
Fang LZ, Hou YL, An J, et al. Genome-Wide transcriptional and post-transcriptional regulation of innate immune and defense responses of bovine mammary gland to Staphylococcus aureus[J]. Frontiers in Cellular and Infection Microbiology, 2016,6:193.
URL pmid: 28083515 |
[16] | Kosciuczuk EM, Lisowski P, Jarczak J, et al. Transcriptome profiling of Staphylococci-infected cow mammary gland parenchyma[J]. BMC Veterinary Research, 2017,13(1):161. |
[17] | Günther J, Koczan D, Yang W, et al. Assessment of the immune capacity of mammary epithelial cells:comparison with mammary tissue after challenge with Escherichia coli[J]. Veterinary Research, 2009,40(4):31. |
[18] |
Wellnitz O, Arnold ET, Bruckmaier RM. Lipopolysaccharide and lipoteichoic acid induce different immune responses in the bovine mammary gland[J]. Journal of Dairy Science, 2011,94(11):5405-5412.
doi: 10.3168/jds.2010-3931 URL pmid: 22032363 |
[19] |
Xu T, Deng RZ, Li XZ, et al. RNA-seq analysis of different inflammatory reactions induced by lipopolysaccharide and lipoteichoic acid in bovine mammary epithelial cells[J]. Microbial Pathogenesis, 2019,130:169-177.
URL pmid: 30878619 |
[20] |
Strandberg Y, Gray C, Vuocolo T, et al. Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells[J]. Cytokine, 2005,31(1):72-86.
doi: 10.1016/j.cyto.2005.02.010 URL pmid: 15882946 |
[21] |
Swanson KM, Stelwagen K, Dobson J, et al. Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model[J]. Journal of Dairy Science, 2009,92(1):117-129.
URL pmid: 19109270 |
[22] |
Wang X, Xiu L, Hu QL, et al. Deep sequencing-based transcriptional analysis of bovine mammary epithelial cells gene expression in response to in vitro infection with Staphylococcus aureus stains[J]. PLoS One, 2013,8(12):e82117.
doi: 10.1371/journal.pone.0082117 URL pmid: 24358144 |
[23] |
Liu J, Cao XT. Cellular and molecular regulation of innate inflammatory responses[J]. Cellular & Molecular Immunology, 2016,13(6):711-721.
URL pmid: 27818489 |
[24] |
Heguy A, Baldari CT, Macchia G, et al. Amino acids conserved in interleukin-1 receptors(IL-1Rs)and the Drosophila toll protein are essential for IL-1R signal transduction[J]. The Journal of Biological Chemistry, 1992,267(4):2605-2609.
URL pmid: 1531143 |
[25] |
McGuire K, Jones M, Werling D, et al. Radiation hybrid mapping of all 10 characterized bovine Toll-like receptors[J]. Animal Genetics, 2006,37(1):47-50.
URL pmid: 16441295 |
[26] |
Vidya MK, Kumar VG, Sejian V, et al. Toll-like receptors:Significance, ligands, signaling pathways, and functions in mammals[J]. Int Rev Immunol, 2018,37(1):20-36.
doi: 10.1080/08830185.2017.1380200 URL pmid: 29028369 |
[27] | Wang XP, Luoreng ZM, Xu SZ, et al. The structure and sequence analysis of TLR4 gene in cattle[J]. Agricultural Sciences in China, 2009,8(5):632-637. |
[28] |
Taro K, Shizuo A. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors[J]. Nature Immunology, 2010,11(5):373-384.
doi: 10.1038/ni.1863 URL pmid: 20404851 |
[29] |
Bhattarai D, Worku T, Dad R, et al. Mechanism of pattern recognition receptors(PRRs)and host pathogen interplay in bovine mastitis[J]. Microbial Pathogenesis, 2018,120:64-70.
doi: 10.1016/j.micpath.2018.04.010 URL pmid: 29635052 |
[30] |
Luoreng ZM, Wang XP, Mei CG, et al. Comparison of microRNA profiles between bovine mammary glands infected with Staphylococcus aureus and Escherichia coli[J]. International Journal of Biological Sciences, 2018,14(1):87-99.
URL pmid: 29483828 |
[31] |
Wang XP, Luoreng ZM, Zan LS, et al. Bovine miR-146a regulates inflammatory cytokines of bovine mammary epithelial cells via targeting the TRAF6 gene[J]. Journal of Dairy Science, 2017,100(9):7648-7658.
URL pmid: 28690061 |
[32] |
Yang J, Chen Y, Jiang KF, et al. MicroRNA-106a provides negative feedback regulation in lipopolysaccharide-induced inflammation by targeting TLR4[J]. International Journal of Biological Sciences, 2019,15(11):2308-2319.
doi: 10.7150/ijbs.33432 URL pmid: 31595149 |
[33] |
Gondaira S, Higuchi H, Iwano H, et al. Innate immune response of bovine mammary epithelial cells to Mycoplasma bovis[J]. Journal of Veterinary Science, 2018,19(1):79.
URL pmid: 28927255 |
[34] |
Sun LT, Chen L, Wang FG, et al. Exogenous hydrogen sulfide prevents lipopolysaccharide-induced inflammation by blocking the TLR4/NF-κB pathway in MAC-T cells[J]. Gene, 2019,710:114-121.
URL pmid: 31153885 |
[35] |
Li CM, Wang XL, Kuang MQ, et al. UFL1 modulates NLRP3 inflammasome activation and protects against pyroptosis in LPS-stimulated bovine mammary epithelial cells[J]. Molecular Immunology, 2019,112:1-9.
URL pmid: 31078114 |
[36] | Wang X, Zhang MM, Jiang N, et al. Sodium Phenylbutyrate ameliorates inflammatory response induced by Staphylococcus aureus lipoteichoic acid via suppressing TLR2/NF-κB/NLRP3 pathways in MAC-T Cells[J]. Molecules, 2018,23(12):3056. |
[37] |
Askarian F, Wagner T, Johannessen M, et al. Staphylococcus aureus modulation of innate immune responses through Toll-like(TLR)(NOD)-like(NLR)and C-type lectin(CLR)receptors[J]. FEMS Microbiology Reviews, 2018,42(5):656-671.
doi: 10.1093/femsre/fuy025 URL pmid: 29893825 |
[38] |
Xu DD, Wang G, He XJ, et al. 17β-Estradiol and progesterone decrease MDP induced NOD2 expression in bovine mammary epithelial cells[J]. Veterinary Immunology and Immunopathology, 2017,188:59-64.
doi: 10.1016/j.vetimm.2017.04.010 URL pmid: 28615128 |
[39] |
Ghosh S, Dass JFP. Study of pathway cross-talk interactions with NF-κB leading to its activation via ubiquitination or phosphorylation:A brief review[J]. Gene, 2016,584(1):97-109.
URL pmid: 26968890 |
[40] |
Strober W, Murray PJ, Kitani A, et al. Signalling pathways and molecular interactions of NOD1 and NOD2[J]. Nature Reviews Immunology, 2006,6(1):9-20.
URL pmid: 16493424 |
[41] | 徐丹丹, 杨彬, 孙志鹏, 等. NOD1/NOD2介导的信号通路在小鼠金黄色葡萄球菌性乳腺炎中的作用[J]. 中国预防兽医学报, 2015,37(7):528-531. |
Xu DD, Yang B, Sun ZP, et al. Effect of NOD1/ NOD2 mediated signal pathway in Staphylococcus aureus induced mouse mastitis[J]. Chinese Journal of Preventive Veterinary Medicine, 2015,37(7):528-531. | |
[42] |
Wu Q, Liu MC, Yang J, et al. Lactobacillus rhamnosus GR-1 ameliorates Escherichia coli-induced inflammation and cell damage via attenuation of ASC-Independent NLRP3 inflammasome activation[J]. Applied and Environmental Microbiology, 2016,82(4):1173-1182.
URL pmid: 26655757 |
[43] |
Wei LJ, Tan X, Fan GJ, et al. Role of the NOD1/NF-κB pathway on bovine neutrophil responses to crude lipopolysaccharide[J]. The Veterinary Journal, 2016,214:24-31.
URL pmid: 27387722 |
[44] |
Kobayashi K, Inohara N, Hernandez LD, et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems[J]. Nature, 2002,416(6877):194-199.
URL pmid: 11894098 |
[45] | 毕崇亮, 刘俊俊, 王亨, 等. 硒对S. aureus诱导的奶牛乳腺上皮细胞Nod2/MAPK/mTORs信号通路关键蛋白表达的影响[J]. 中国农业科学, 2019,52(16):2891-2898. |
Bi CL, Liu JJ, Wang H, et al. Effects of selenium on the key factors in Nod2/MAPK/mTORs signaling pathways in the bMECs infected S. aureus[J]. Scientia Agricultura Sinica, 2019,52(16):2891-2898. | |
[46] |
Hruz P, Zinkernagel AS, Jenikova G, et al. NOD2 contributes to cutaneous defense against Staphylococcus aureus through alpha-toxin-dependent innate immune activation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(31):12873-12878.
URL pmid: 19541630 |
[47] |
Moreira LO, Zamboni DS. NOD1 and NOD2 signaling in infection and inflammation[J]. Frontiers in Immunology, 2012,3:328.
URL pmid: 23162548 |
[48] |
Correa RG, Milutinovic S, Reed JC. Roles of NOD1(NLRC1)and NOD2(NLRC2)in innate immunity and inflammatory diseases[J]. Bioscience Reports, 2012,32(6):597-608.
URL pmid: 22908883 |
[49] | 王兴平, 许尚忠, 马腾壑, 等. 牛TLR4基因的遗传多态性与乳房炎的关联分析[J]. 畜牧兽医学报, 2007(2):120-124. |
Wang XP, Xu SZ, et al. Genetic polymorphism of TLR4 gene and correlation with mastitis in bovine[J]. Chinese Journal of Animal and Veterinary Sciences, 2007(2):120-124. | |
[50] | 陈仁金, 王珍珍, 杨章平, 等. 中国荷斯坦牛Toll样受体4基因的遗传多态性与体细胞评分的关联分析[J]. 中国畜牧兽医, 2013,40(11):134-138. |
Chen RJ, Wang ZZ, Yang ZP, et al. Genetic polymorphism of TLR4 gene and its associations with somatic cell score in Chinese Holstein cattle[J]. China Animal Husbandry & Veterinary Medicine, 2013,40(11):134-138. | |
[51] |
Wang XP, Luoreng ZM, Gao SX, et al. Haplotype analysis of TLR4 gene and its effects on milk somatic cell score in Chinese commercial cattle[J]. Molecular Biology Reports, 2014,41(4):2345-2351.
URL pmid: 24415303 |
[52] | 马腾壑, 许尚忠, 王兴平, 等. 奶牛TLR2基因遗传变异与乳房炎体细胞评分的相关研究[J]. 畜牧兽医学报, 2007(4):332-336. |
Ma TH, Xu SZ, Wang XP, et al. Polymorphism of bovine TLR2 gene and its associations with somatic cell score[J]. Chinese Journal of Animal and Veterinary Sciences, 2007(4):332-336. | |
[53] |
Zhang LP, Gan QF, Ma TH, et al. Toll-like receptor 2 gene polymorphism and its relationship with SCS in dairy cattle[J]. Animal Biotechnology, 2009,20(3):87-95.
URL pmid: 19544205 |
[54] | 孙淑霞, 王长法, 张连江, 等. 中国荷斯坦牛IRAK2基因遗传多样性与乳腺炎的相关性研究[J]. 中国农业科学, 2011,44(20):4317-4325. |
Sun SX, Wang CF, Zang LJ, et al. Study on polymorphisms of IRAK2 gene and its association with mastitis in Chinese Holstein cattle[J]. Scientia Agricultura Sinica, 2011,44(20):4317-4325. | |
[55] | Pant SD, Schenkel FS, Leyva-Baca I, et al. Identification of single nucleotide polymorphisms in bovine CARD15 and their associations with health and production traits in Canadian Holsteins[J]. BMC Genomics, 2007,8(1):421. |
[56] |
Wang W, Cheng L, Yi J, et al. Health and production traits in bovine are associated with single nucleotide polymorphisms in the NOD2 gene[J]. Genetics and Molecular Research, 2015,14(2):3570-3578.
URL pmid: 25966125 |
[57] | 李虹. CXCL10基因与奶牛乳腺炎易感性/抗性相关功能性分子标记的研究[D]. 济南:山东师范大学, 2016. |
Li H. Studie on functional molecular marker of CXCL10 gene associated with mastitis susceptibility/resistance in dairy cattle[D]. Ji’nan:Shandong Normal University, 2016. | |
[58] | 郭润晴. 奶牛乳腺CCL5转录调控机制解析及其功能性分子标记鉴定[D]. 邯郸:河北工程大学, 2018. |
Guo RQ. Analysis of transcriptional regulation mechanism and identification of functional molecular marker of CCL5 in mammary gland of dairy cow[D]. Handan:Hebei University of Engineering, 2018. |
[1] | LI Yan-xia, WANG Jin-peng, FENG Fen, BAO Bin-wu, DONG Yi-wen, WANG Xing-ping, LUORENG Zhuo-ma. Effects of Escherichia coli Dairy Cow Mastitis on the Expressions of Milk-producing Trait Related Genes [J]. Biotechnology Bulletin, 2023, 39(2): 274-282. |
[2] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[3] | CHEN Ying, WANG Yi-lei, ZOU Peng-fei. Cloning and Expression Analysis of TRAF6 from Large Yellow Croaker Larimichthys crocea [J]. Biotechnology Bulletin, 2022, 38(8): 233-243. |
[4] | LI Yu-hang, WANG Xing-ping, YANG Jian, LUORENG Zhuo-ma, REN Qian-qian, WEI Da-wei, MA Yun. Expression and Functional Analysis of miR-665 in Bovine Mammary Epithelial Cell Inflammation [J]. Biotechnology Bulletin, 2022, 38(5): 159-168. |
[5] | ZOU Chen-chen, RUAN Ling-wei, SHI Hong. Wnt Signaling Pathway and Innate Immunity of Invertebrate [J]. Biotechnology Bulletin, 2021, 37(5): 182-196. |
[6] | LI Kai-qing, LI Ying, WANG Yi-lei, ZOU Peng-fei. The Function of Receptor-interacting Protein(RIP)Kinases and the Research Progress in Teleost Fish [J]. Biotechnology Bulletin, 2021, 37(5): 197-211. |
[7] | ZHA Xing-qin, YANG Ming-hua, LI Yong-neng, ZHAO Su-mei, HUANG Ying. Study on the Regulation of Leptin-mediated JAK/STAT Signal Pathway on Lipid Metabolism in Porcine Subcutaneous Preadipocyte [J]. Biotechnology Bulletin, 2021, 37(2): 88-95. |
[8] | WANG Jin-peng, LUORENG Zhuo-ma, WANG Xing-ping, YANG Jian, JIA Li, MA Yun, WEI Da-wei. Research Progress in Treatment and Anti-inflammatory Molecular Mechanism of Cow Mastitis [J]. Biotechnology Bulletin, 2021, 37(12): 212-219. |
[9] | ZHANG Meng, LUO Fang, WANG Min, WU Yan-ze, WANG Jun-kui, HE Dong-qian, CHEN Li-yao, TAO Jin-zhong. Changes in Plasma Metabolites After Calving in Dairy Cows [J]. Biotechnology Bulletin, 2020, 36(6): 191-199. |
[10] | MING Peng-fei, HUANG Ying-ying, DONG Yan-li, NIE Xing-can, FENG Shi-bin, WANG Xi-chun, CHENG Jian-bo, LI Jin-chun, WU Jin-jie, LI Yu. Regulation of LKB1-AMPKα-SIRT1 Signal Pathway in Lipid Metabolism in the Adipose Tissue of Dairy Cows [J]. Biotechnology Bulletin, 2019, 35(2): 176-181. |
[11] | DONG Ru, CAO Yang-rong. Research Progress on the Immune Regulation of Symbiotic Nitrogen Fixation Between Legumes and Rhizobia [J]. Biotechnology Bulletin, 2019, 35(10): 25-33. |
[12] | XIA Hong-li, CHENG Jun, YU Da-peng, CHEN Wen-jie, LU Yi-shan. Research Progress on Peptidoglycan Recognition Proteins in Fish [J]. Biotechnology Bulletin, 2018, 34(8): 58-66. |
[13] | ZHAO Yan-kun, LIU Hui-min, WANG Shuai, CAI Jian-xing, WANG Cheng, CHEN He. Research Progress on Drug Resistance of Staphylococcus aureus in Bovine Mastitis [J]. Biotechnology Bulletin, 2018, 34(10): 18-25. |
[14] | WANG Qi, QI Ren-li, WANG Jing, HUANG Jin-xiu. Investigation of Autophagy Induced by Amino Acid Deprivation and the Regulatory Mechanisms of miRNA in Autophagy [J]. Biotechnology Bulletin, 2016, 32(9): 38-43. |
[15] | YANG Meng-si, ZHOU Na, WANG Zhi-gang,HAO Hui-fang. Research Progress on the Role of Transcription Factor HIF-1α and Its Signal Pathway in the Pathogenesis [J]. Biotechnology Bulletin, 2016, 32(8): 8-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||