Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (2): 178-187.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0523
Previous Articles Next Articles
YANG Shu-ping, ZHANG Lin, XU Ji-lin
Received:
2019-06-14
Online:
2020-02-26
Published:
2020-02-23
YANG Shu-ping, ZHANG Lin, XU Ji-lin. Research Advance on the Application of Additives in Algae[J]. Biotechnology Bulletin, 2020, 36(2): 178-187.
[1] 陈艳梅, 石阳, 王明兹, 等. 海产养殖饵料微藻开发利用进展[J]. 生物技术通报, 2015, 31(9):60-65. [2] He B, Hou L, Dong M, et al.Transcriptome analysis in Haematoco-ccus pluvialis:astaxanthin induction by high light with acetate and Fe2+[J]. International Journal of Molecular Sciences, 2018, 19(1):175. [3] Sheikhzadeh N, Panchah IK, Asadpour R, et al.Effects of Haemat-ococcus pluvialis in maternal diet on reproductive performance and egg quality in rainbow trout(Oncorhynchus mykiss)[J]. Animal Reproduction Science, 2012, 130(1-2):119-123. [4] 陈忠伟, 邱洁, 李晓玉, 等. 螺旋藻抗炎和免疫增强作用的研究[J]. 中国畜牧兽医, 2019, 46(7):2135-2143. [5] Ammar SH, Khadim HJ, Mohamed AI.Cultivation of Nannochloropsis oculata and Isochrysis galbana microalgae in produced water for bioremediation and biomass production[J]. Environmental Technology Innovation, 2018, 10:132-142. [6] Daneshvara E, Zarrinmehr MJ, Hashtjin AM, et al.Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption[J]. Bioresource Technology, 2018, 268:523-530. [7] Gao ZQ, Meng CX, Zhang XW, et al.Induction of salicylic acid(SA)on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis[J]. Enzyme & Microbial Technology, 2012, 51(4):225-230. [8] Shaki F, Maboud HE, Niknam V.Growth enhancement and salt tolerance of Safflower(Carthamus tinctorius L.), by salicylic acid[J]. Current Plant Biology, 2018, 13:16-22. [9] Wu Y, Zhang D, Chu JY, et al.The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid[J]. Cell Reports, 2012, 1:639-647. [10] Mirshekari M, Einali A, Valizadeh J.Metabolic changes and activity pattern of antioxidant enzymes induced by salicylic acid treatment in green microalga Dunaliella salina under nitrogen deficiency[J]. Journal of Applied Phycology, 2019(31):1709-1719. [11] Kagale S, Divi UK, Krochko JE, et al.Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses[J]. Planta, 2007, 225(2):353-364. [12] Zhang A, Zhang J, Zhang J, et al.Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves[J]. Plant and Cell Physiology, 2011, 52(1):181-192. [13] Bajguz A.An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress[J]. Environmental and Experimental Botany, 2010, 68(2):175-179. [14] Huang XZ, Hou LY, Meng JJ, et al.The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in, Arabidopsis[J]. Molecular Plant, 2018, 11(7):970-982. [15] 刘晓龙. 脱落酸(ABA)对水稻耐碱胁迫的诱抗效应及机理研究[D]. 北京:中国科学院大学, 2019. [16] Shen JL, Li CL, Wang M.Mitochondrial pyruvate carrier mediates abscisic acid-regulated stomatal closure and the drought response by affecting cellular pyruvate content in Arabidopsis thaliana[J]. BMC Plant Biology, 2017, 17(1):217. [17] 苗钧魁, 李铁松, 王长海. 海带中脱落酸的分离纯化及高效液相色谱分析[J]. 烟台大学学报:自然科学与工程版, 2009, 22(4):295-298 [18] Yoshida K, Igarashi E, Mukai M, et al.Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid[J]. Plant Cell and Environment, 2003, 26(3):451-457. [19] Liu JY, Wen Q, Song YM, et al.The growth and lipid productivity of Chlorella pyrenoidosa enhanced by plant hormones under ammonium stress[J]. Environmental Progress Sustainable Energy, 2017, 36:1187-1193. [20] Stirk WA, Bálint P, Tarkowská D, et al.Hormone profiles in microalgae:Gibberellins and brassinosteroids[J]. Plant Physiology and Biochemistry, 2013, 70(1):348-353. [21] Reinecke DM, Wickramarathna AD, Ozga JA, et al.Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea[J]. Plant Physiology, 2013, 163(2):929-945. [22] Eriksson S.GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation[J]. The Plant Cell Online, 2006, 18(9):2172-2181. [23] 李军, 周涛, 郑伟, 等. 外源GA3对太子参块根发育及赤霉素生物合成的调控[J]. 分子植物育种, 2018, 16(20):6867-6874. [24] Achard P, Renou JP, Berthomé R, et al.Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species[J]. Current Biology, 2008, 18(9):656-660. [25] Gao Z, Meng C, Gao H, et al.Carotenoid genes transcriptional regulation for astaxanthin accumulation in fresh water unicellular alga Haematococcus pluvialis by gibberellin A3(GA3)[J]. Indian Journal of Biochemistry & Biophysics, 2013, 50(6):548-553. [26] Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, et al.Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris(Chlorophyceae)[J]. Plant Physiology and Biochemistry, 2012, 52:52-65. [27] Hirschi KD. The Calcium Conundrum.Both versatile nutrient and specific signal[J]. Plant Physiology, 2004, 136(1):2438-2442. [28] 黄璐瑶, 李壮壮, 鞠龙泰, 等. 外源钙对盐胁迫下金银花离子含量及光合相关基因表达的影响[J]. 中国中药杂志, 2019, 44(12):2452-2458. [29] Dubiella U, Seybold H, Durian G, et al.Calcium-dependent protein kinase / NADPH oxidase activation circuit is required for rapid defense signal propagation[J]. Proceedings of the National Academy of Sciences, 2013, 110(21):1-6. [30] Larbi A, Kchaou H, Gaaliche B, et al.Supplementary potassium and calcium improves salt tolerance in olive plants[J]. Scientia Horticulturae, 2020, 260:108912. [31] Chen H, Zhang Y, He C, et al.Ca2+ signal transduction related to neutral lipid synthesis in an oil-producing green alga Chlorella sp C2[J]. Plant and cell Physiology, 2014, 55(3):634-644. [32] Zhao YT, Song XT, Yu L, et al.Influence of cadmium stress on the lipid production and cadmium bioresorption by Monoraphidium sp. QLY-1[J]. Energy Conversion and Management, 2019, 188:76-85. [33] Gupta V, Kumar M, Brahmbhatt H, et al.Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid-liquid microextraction method[J]. Plant Physiology and Biochemistry, 2011, 49(11):1259-1263. [34] 陈晶, 庞思琪, 赵秀兰. 外源生长素对镉胁迫下玉米幼苗生长及抗氧化系统的影响[J]. 植物生理学报, 2016(8):1191-1198. [35] Sakata T, Oshino T, Miura S, et al.Auxins reverse plant male sterility caused by high temperatures[J]. Proceedings of the National Academy of Sciences, 2010, 107(11):8569-8574. [36] Liu T, Liu F, Wang C, et al.The boosted biomass and lipid accumulation in, Chlorella vulgaris, by supplementation of synthetic phytohormone analogs[J]. Bioresource Technology, 2017, 232:44-52. [37] Zhao PC, Lin ZY, Wang IM, et al.Facilitating effects of plant hormones on biomass production and nutrients removal by Tetraselmis cordiformis for advanced sewag treatment and its mechanism[J]. Science of the Total Environment, 2019. doi:10. 1016/j. scitotenv. 2019. 133650. [38] 崔伟婵, 李霜雯, 严善春. 不同光照下外源茉莉酸类物质对兴安落叶松防御蛋白的影响[J]. 东北林业大学学报, 2016, 44(9):78-81. [39] 山雨思, 代欢欢, 何潇, 等. 外源茉莉酸甲酯和水杨酸对盐胁迫下颠茄生理特性和次生代谢的影响[J]. 植物生理学报, 2019, 55(9):1335-1346. [40] 徐毅然. 番茄茉莉酸信号途径转录因子MYC2基因调控网络的构建及其增强子元件鉴定[D]. 泰安:山东农业大学, 2019. [41] 王重彬, 邹同雷, 孙雪, 等. 水杨酸和茉莉酸甲酯对高温龙须菜(Gracilariopsis lemaneiformis)理化及基因表达的影响[J]. 海洋与湖沼, 2015, 46(5):1132-1138. [42] 吕芳, 丁刚, 詹冬梅, 等. 茉莉酸甲酯对铜藻生长、抗氧化系统及岩藻黄素含量的影响[J]. 植物生理学报, 2019, 55(5):667-675. [43] Lu Y, Jiang P, Liu S, et al.Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of β-carotene ketolase genes(bkts)in microalga Haematococcus pluvialis[J]. Bioresource Technology, 2010, 101(16):6468-6474. [44] 韩惠宾, 张国华, 王国栋. 细胞分裂素参与植物维管系统发育的信号转导研究进展[J]. 植物生理学报, 2015, 51(7):996-1002. [45] Nimir NEA, Zhou GS, Guo WS, et al.Effect of foliar application of GA3, kinetin, and salicylic acid on ions content, membrane permeability and photosynthesis under salt stress of sweet sorghum[J]. Canadian Journal of Plant Science, 2017, 95:525-535. [46] 刘洋. 细胞分裂素和氮素共同作用对匍匐翦股颖(Agrostis stolonifera)抗旱性的影响研究[D]. 北京:北京林业大学, 2015. [47] Udayan A, Kathiresan S, Arumugam M.Kinetin and gibberellic acid(GA3)act synergistically to produce high value polyunsaturated fatty acids in, Nannochloropsis oceanica CASA CC201[J]. Algal Research, 2018, 32:182-192. [48] Wu G, Gao Z, Du H, et al, The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains[J]. Journal of General and Applied Microbiology, 2018, 64:42-49. [49] Chu J, Li Y, Cui Y, et al, The influences of phytohormones on triacylglycerol accumulation in an oleaginous marine diatom Phaeodactylum tricornutum[J]. Journal of Applied Phycology, 2019, 31:1009-1019. [50] Park WK, Yoo G, Moon M, et al.Phytohormone supplementation significantly increases growth of chlamydomonas reinhardtii cultivated for biodiesel production[J]. Applied Biochemistry and Biotechnology, 2013, 171(5):1128-1142. [51] 肖丹曦. 植物激素ABA和GA对紫球藻生长的影响[D]. 广州:暨南大学, 2009. [52] 史成颖, 蔡为荣, 甘旭华, 等. 6种植物生长调节剂对钝顶螺旋藻生长的影响[J]. 安徽农业大学学报, 2004(1):26-29. [53] Bajguz A, Piotrowska-Niczyporuk A.Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris(Trebouxiophyceae)[J]. Plant Physiology and Biochemistry, 2013, 71:290-297. [54] 王婷, 赵培, 王雪青. 低温环境对球等鞭金藻3011抗氧化系统和二十二碳六烯酸产量的影响[J]. 食品科学, 2016, 37(1):126-132. [55] 任晓咏. 低温胁迫对三角褐指藻生长和生理生化影响及其LEA基因的克隆[D]. 大连:辽宁师范大学, 2011. [56] 常博文, 钟鹏, 刘杰, 等. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响[J]. 作物学报, 2019, 45(1):118-130. [57] 刘思宇. 外源物质对低温胁迫下番茄幼苗生理指标的影响[J]. 北方园艺, 2010(17):44-46. [58] 章锦涛, 王华, 王松, 等. 外施脱落酸对低温胁迫下山茶花生理生化指标的影响[J]. 安徽农业大学学报, 2017, 44(1):142-145. [59] 陈文笔, 张琳, 徐继林, 等. 外源水杨酸提高微拟球藻低温抗逆性的应用[J]. 农业生物技术学报, 2017, 25(2):240-249. [60] 吕冰心, 常蓉, 李博生. 基于蛋白质组学对螺旋藻在高温胁迫下响应机制的初步研究[J]. 植物生理学报, 2018, 54(5):904-916. [61] 雷亚萍, 许丽红, 曾臻, 等. 共生与非共生爪哇伪枝藻对高温胁迫的响应[J]. 水生生物学报, 2017, 41(3):671-676. [62] 丁聪聪, 徐年军, 张琳, 等. 水杨酸对蛋白核小球藻(Chlorella pyrenoidosa)生长及抗逆相关基因的影响[J]. 海洋与湖沼, 2015, 46(6):1451-1460. [63] 李静, 王俏俏, 徐年军, 等. 24-表油菜素内酯对龙须菜抗高温胁迫的研究[J]. 海洋学报, 2014, 36(8):82-90. [64] 朱招波, 孙雪, 徐年军, 等. 水杨酸对龙须菜抗高温生理的影响[J]. 水产学报, 2012, 36(8):1304-1312. [65] 贺亮. 高温胁迫下半叶马尾藻中国变种生理生化响应及其耐热机制的初步研究[D]. 湛江:广东海洋大学, 2017. [66] 张倩. 酸性和高温条件下4株小球藻的生长及总脂含量研究[C]. 2014中国环境科学学会学术年会论文集, 2014. [67] 史飞飞, 程宇娇, 马浩天, 等. 利用赤霉素提高微藻耐酸性的研究[J]. 山西农业大学学报:自然科学版, 2018, 38(3):30-35. [68] 李建宏, 浩云涛, 翁永萍. Cd2+胁迫条件下椭圆小球藻的生理应答[J]. 水生生物学报, 2004(6):659-663. [69] 全秋梅, 贺亮, 梁忠, 等. 镉离子胁迫下半叶马尾藻中国变种生理生化响应的研究[J]. 海洋湖沼通报, 2019(2):139-146. [70] Kovacik J, Micalizzi G, Dresler S, et al.Metabolic responses of Ulva compressa to single and combined heavy metals[J]. Chemosphere, 2018, 213:384-394. [71] Bajguz A.Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide[J]. Plant Physiology and Biochemistry(Paris), 2000, 38(10):797-801. [72] 刘成圣, 唐学玺. UV-B辐射对三角褐指藻的膜酯脱酯化伤害[J]. 海洋水产研究, 2002(3):37-40. [73] 屠燕萍, 俞泓伶, 谢志浩. 三角褐指藻和小角毛藻对UV-B辐射增强的生理生化响应[J]. 生态科学, 2013, 32(4):474-479. [74] Han MM, Hu F, Wang K, et al.Effect of different kinds of exogen-ous auxin on the growth of rice roots under cadmium stress[J]. Agricultural Science & Technology, 2010, 11(7):45-48. [75] 韩燕. 细胞分裂素和生长素对UV-B诱导气孔关闭的效应及其机制研究[D]. 西安:陕西师范大学, 2007. [76] 卓品利, 钟佳丽, 王东, 等. 不同光照条件下外源水杨酸对浒苔响应紫外辐射胁迫的影响[J]. 应用生态学报, 2017, 28(6):1977-1983. [77] Liang Y, Cao CH, Tian CY, et al.Changes in cell density and chlorophyll fluorescence with salinity stress in two Isochrysis galbana strains(Prymnesiophyceae)[J]. Biocontrol Science and Technology, 2014, 145(1):81-98. [78] 赵萍, 邹宁, 孙东红, 等. 盐度对三角褐指藻生长及有机质积累的影响[J]. 中国油料作物学报, 2013, 35(2):217-220. [79] 魏显珍, 王淑智, 潘响亮. 盐胁迫对喜钙念珠藻生理活性的影响及钙的胁迫缓解效应[J]. 应用与环境生物学报, 2013, 19(4):655-662. [80] 吴以平, 董树刚. 钙对高盐胁迫下缘管浒苔和孔石莼生理生化过程的影响[J]. 海洋科学, 2000(8):11-14. [81] 夏蕊琪, 査婧, 曹媛媛, 等. 螺旋藻在光胁迫时的抗逆性研究[J]. 生物学杂志, 2013, 30(5):45-48. [82] 陈陆丹, 许凯, 徐燕, 等. 坛紫菜应答高光强胁迫的生理指标分析[J]. 应用海洋学学报, 2016, 35(3):399-404. [83] 巩东辉, 王志忠, 季祥, 等. 低温、强光胁迫对鄂尔多斯钝顶节旋藻光合速率及光合色素含量的影响[J]. 内蒙古农业大学学报:自然科学版, 2016, 37(6):65-69. [84] 崔丹丹, 杨柳, 孙雪, 等. 玉米素和水杨酸对雨生红球藻(Haematococcus pluvialis)生长及虾青素积累的影响[J]. 海洋与湖沼, 2018, 49(3):682-691. |
[1] | ZHOU Ai-ting, PENG Rui-qi, WANG Fang, WU Jian-rong, MA Huan-cheng. Analysis of Metabolic Differences of Biocontrol Strain DZY6715 at Different Growth Stages [J]. Biotechnology Bulletin, 2023, 39(9): 225-235. |
[2] | ZHAO Guang-xu, YANG He-tong, SHAO Xiao-bo, CUI Zhi-hao, LIU Hong-guang, ZHANG Jie. Phosphate-solubilizing Properties and Optimization of Cultivation Conditions of Penicillium rubens: A Highly Efficient Phosphate Solubilizer [J]. Biotechnology Bulletin, 2023, 39(9): 71-83. |
[3] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[4] | FU Yu, JIA Rui-rui, HE He, WANG Liang-gui, YANG Xiu-lian. Growth Differences Among Grafted Seedlings with Two Rootstocks of Catalpa bungei and Comparative Analysis of Transcriptome [J]. Biotechnology Bulletin, 2023, 39(8): 251-261. |
[5] | FANG Lan, LI Yan-yan, JIANG Jian-wei, CHENG Sheng, SUN Zheng-xiang, ZHOU Yi. Isolation, Identification and Growth-promoting Characteristics of Endohyphal Bacterium 7-2H from Endophytic Fungi of Spiranthes sinensis [J]. Biotechnology Bulletin, 2023, 39(8): 272-282. |
[6] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[7] | ZHOU Zhen-chao, ZHENG Ji, SHUAI Xin-yi, LIN Ze-jun, CHEN Hong. High-throughput Profiling and Analysis of Shared Antibiotic Resistance Genes in Human Feces, Skin and Water Environments [J]. Biotechnology Bulletin, 2023, 39(7): 288-297. |
[8] | CHEN Yong, LI Ya-xin, WANG Ya-xuan, LIANG Lu-jie, FENG Si-yuan, Tian Guo-bao. Research Progress in the Molecular Mechanism of MCR-1 Mediated Polymyxin Resistance [J]. Biotechnology Bulletin, 2023, 39(6): 102-108. |
[9] | XU Hong-Yun, LV Jun, YU Cun. Growth Promoting of Pinus massoniana Seedlings Regulated by Rhizosphere Phosphate-solubilizing Paraburkholderia spp. [J]. Biotechnology Bulletin, 2023, 39(6): 274-285. |
[10] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[11] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[12] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[13] | CHE Yong-mei, GUO Yan-ping, LIU Guang-chao, YE Qing, LI Ya-hua, ZHAO Fang-gui, LIU Xin. Isolation and Identification of Bacterial Strain C8 and B4 and Their Halotolerant Growth-promoting Effects and Mechanisms [J]. Biotechnology Bulletin, 2023, 39(5): 276-285. |
[14] | LUO Yi, ZHANG Li-juan, HUANG Wei, WANG Ning, Wuerlika MAITIHASEM, SHI Chong, WANG Wei. Identification of a Uranium-resistant Strain and Its Growth-promoting Properties [J]. Biotechnology Bulletin, 2023, 39(5): 286-296. |
[15] | YAO Zi-ting, CAO Xue-ying, XIAO Xue, LI Rui-fang, WEI Xiao-mei, ZOU Cheng-wu, ZHU Gui-ning. Screening of Reference Genes for RT-qPCR in Neoscytalidium dimidiatum [J]. Biotechnology Bulletin, 2023, 39(5): 92-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||